Aritmetik ve geometrik diziler, seriler, çeşitleri, özellikleri

Aritmetik ve geometrik diziler, seriler, çeşitleri, özellikleri

A. ARİTMETİK VE GEOMETRİK DİZİLER

1. ARİTMETİK DİZİ

A. Tanım
Ardışık iki terimin arasındaki fark, aynı sabit bir sayı olan dizilere aritmetik dizi denir.

Diğer bir ifadeyle  için, an+1 – an = d olacak şekilde bir d R varsa (an) dizisine aritmetik dizi, d sayısına da ortak fark denir.

Örnek

(an) = (n+10)/5 dizisinin aritmetik dizi olduğunu gösteriniz. Ortak farkını bulunuz.

an+1 – an = (n+1+10)/5 – (n+10)/5 = 1/5 olduğuna göre (an), ortak farkı d = 1/5 olan bir aritmetik dizidir.

B. Genel Terim

Aritmetik dizinin ilk terimi a1 ve ortak farkı

olan bir aritmetik dizidir.

Demek ki, aritmetik dizinin genel terimi: an = a1 + (n – 1)d dir.

Örnek
İlk terimi 8 ve ortak farkı 2 olan aritmetik dizinin genel terimi nedir?

C. Aritmetik Dizinin Özellikleri

Aritmetik dizide ap ve ak biliniyorsa, ortak fark:

Örnek

39. terimi 19 ve 45. terimi 22 olan aritmetik dizinin ortak farkı kaçtır?

a ve b gibi iki sayı arasına n tane terim yerleştirilerek oluşturulan aritmetik dizinin ortak farkı:

Örnek

– 8 ve 28 sayıları arasına 8 tane terim yerleştirilerek oluşturulan aritmetik dizinin ortak farkı kaçtır?

a = -8, b = 28 ve n = 8 olduğuna göre, d = (b – a)/(n+1) = [28 – (-8)]/(8+1) = 36/9 = 4

Aritmetik dizinin ilk terimi n teriminin (bilgi yelpazesi.net)toplamı Sn ile gösterilirse,

Bir aritmetik dizide, her terim kendisinden eşit uzaklıkta iki terimin kendisinden eşit uzaklıktaki iki terimin aritmetik ortalamasına eşittir. Diğer bir ifadeyle k<p iken,

Örnek

19. terimi 42 ve 33. terimi 88 olan aritmetik dizinin 26. terimi kaçtır?

2. GEOMETRİK DİZİ

A. Tanım

Ardışık iki terimin oranı aynı sabit bir sayı olan dizilere geometrik dizi denir. Diğer bir ifadeyle

olacak şekilde bir r  R varsa (an) dizisine geometrik dizi, r sayısına ortak
çarpan veya ortak oran denir.
Örnek
(an) = (2n+5) dizisinin geometrik dizi olduğunu gösteriniz. Dizinin ortak çarpanını bulunuz.


olduğuna göre (an), ortak çarpanı r = 2 olan geometrik bir dizidir.

B. Genel Terim

Dizinin ilk terimi a1 ve ortak çarpanı r olsun. Bu durumda,

Demek ki, geometrik dizinin genel terimi:

Örnek

İlk terimi 14 ve ortak çarpanı ½ olan geometrik dizinin genel terimi nedir?




C. Geometrik Dizinin Özellikleri

Geometrik dizide ap ve ak biliniyorsa, ortak çarpan:

eşitliğinde bulunur.

Örnek

2. terimi 3/5 ve 5. terimi 75 olan geometrik dizinin ortak çarpanı nedir?

Geometrik dizinin ilk n teriminin toplamı Sn ile gösterilirse

olur.

Örnek

İlk terimi 6 ve ilk 3 teriminin toplamı 42 olan geometrik dizinin 3. terimi nedir?

Bir geometrik dizide, her terim kendisinden eşit uzaklıktaki iki terimin geometrik ortalamasına eşittir. Diğer bir ifadeyle k < p iken,

Örnek

3. terimi 3 ve 5. terimi 6 olan geometrik dizinin 7. terimi nedir?

Sonuç:

Sabit dizi, ortak farkı 0 olan aritmetik bir dizidir. Sabit dizi, ortak çarpanı 1 olan geometrik bir dizidir. Sabit dizi, ortak çarpanı 1 olan (bilgi yelpazesi.net)geometrik bir dizidir. Yani, sabit dizi hem aritmetik hem de geometrik dizidir.

Örnek:

Bir geometrik dizinin ilk terimi x, ortak çarpanı 6, n. terimi y’dir. Bu dizinin, ilk n teriminin toplamının x ve y’ye bağlı ifadesi aşağıdakilerden hangisidir?

3. SERİLER

A. Tanım

– (an) reel terimli bir dizi olsun.

sonsuz toplamına seri denir.

– an’e serinin genel terimi denir.

– Serinin ilk n teriminin topl******* oluşan

toplamına serinin n. kısmi toplamı denir.

– (dizisine kısmi toplamlar dizisi denir.


a) (Sn) dizisi yakınsak ise
 serisi de yakınsaktır ve serinin toplamı
 dir.
b) (Sn) dizisi ıraksak ise
 seriside ıraksaktır.


 serisi yakınsak ise lim an = 0’dır. Bu ifadenin tersi doğru değildir.Yani, lim an = 0 iken  serisi yakınsak olmayabilir.


serisi ıraksaktır.

Örnek
 serisi veriliyor. Serinin ıraksak olduğunu gösteriniz.

olduğuna göre seri ıraksaktır.

B. ARİTMETİK VE GEOMETRİK SERİLER

1. Aritmetik Seriler

(an) dizisi bir aritmetik dizi ise
 serisine aritmetik seri denir.

Aritmetik serinin kısmi toplamı

Aritmetik seri ıraksaktır.

Örnek

(n – 10)/20 serisi veriliyor. Serinin, aritmetik seri olduğunu gösteriniz. Serinin kısmi toplamını bulunuz. Serinin ıraksak olduğunu gösteriniz.


olduğuna göre (Sn) kısmi toplamlar dizisi ıraksaktır. (Sn) kısmi toplamlar dizisi ıraksak olduğu için sorulan seri ıraksaktır.




2. Geometrik Seriler
(an) dizisi bir geometrik dizi ise  serisine geometrik seri denir. Geometrik serinin kısmi toplamı

a) |r| < 1 ise seri yakınsaktır ve serinin toplamı:

b)  ise seri ıraksaktır.

Örnek

serisi veriliyor.
Serinin, geometrik seri olduğunu gösteriniz, serinin kısmi toplamını bulunuz, serinin yakınsak olduğunu gösteriniz, serinin (bilgi yelpazesi.net)toplamını bulunuz.

olduğu için seri geometrik seridir.

a1 = 1 ve r = 1/3 olduğuna göre,

r = 1/3 olduğuna göre |r| = |1/3| = 1/3 < 1 dir. Bunu için seri yakınsaktır.

Seri yakınsak olduğuna göre toplamı

Sosyal Medyada Paylaşın:

BİRDE BUNLARA BAKIN

Düşüncelerinizi bizimle paylaşırmısınız ?

Yorum yazmak için giriş yapmalısın