admin

admin

19 Nisan 2024 Cuma

Deterjanlar

Deterjanlar
0

BEĞENDİM

ABONE OL
Deterjanlar kompleks yapılı sentetik yapılı maddelerdir. Sabun ve deterjanların kimyasal yapısı çok farklı olduğundan temizleme işlevindeki etkileri de farklıdır. Sabun asidik ve sert sularda etkili değildir ,(Sert sudaki Ca ve Mg ile (C H COO) Ca oluşur ve çöker) bir çökelti oluşturur. Buna karşılık deterjanlar bu tip sularda etkilidir.
Yüzey aktif madde (sürfaktan) ismi sabun, deterjan, emülsiyon oluşturan maddeler, ıslatıcı maddeler için kullanılan genel bir isimdir. Deterjanlar, herbiri temizlemede ayrı bir görev yapan, pek çok maddenin çok kompleks bir karışımıdır .Yüzey aktif maddeler veya sürfaktanlarla ilgili modern kavram, sabunları, deterjanları, emülsifiyanları, ıslatıcı maddeleri ve girme (penetrasyon) maddelerini kapsamaktadır. Bütün bunlar, birbirleriyle temasta olan iki faz arasındaki yüzey tabakasının özelliklerini değiştirerek, aktifliklerini sürdürürler. Yüzey aktif maddelerin pek çoğu, molekülün bir ucunda suyu çeken (hidrofilik) ve diğer ucunda suyu iten (hidrofobik) bir grup bulundururlar. Deterjanlar, kirleri uzaklaştırmada etkin olan bu özelliklere, fazlasıyla sahiptirler. Hafif ve ağir iş deterjanları olarak sınıflandırılırlar.Yüzey Aktif Maddelerin Sınıflandırılması:
Yüzey aktif maddelerinin hidrofobik kısmı genelde 8-18 karbon içeren düz veya az dallanmış zincirdir, bazı hallerde zincirdeki bazı karbon atomlarının yerine benzen halkası geçmiştir. Örnek olarak C H _ (dodesil) ve C H C H _ (dodesil) benzen verilebilir. Yüzey aktif maddenin içerdiği hidrofilik grup çok farklı olabilir. Hidrofilik grubun yapısına göre yüzey aktif maddeler;

 Anyonik : _ OSO veya _ SO
 Katyonik : _ N (CH ) veya C H N
 İç tuz : _ N (CH ) (CH ) COO
 Yarı polar : _N(CH ) O
 İyonik olmayan : _ (OCH CH ) OH
Yüzey aktif madde olmak üzere sınıflandırılabilir.

 Anyonik deterjanlar, sulu çözeltide – iyon içeren yüzey aktif maddelerdir.

C H OH + SO C H OSO H C H OSO Na

 Katyonik deterjanlar, çözeltide pozitif yüklü iyon veren yüzey aktif maddelerdir.
C H Cl + N(CH ) C H N(CH ) Cl
 Yarı polar deterjanların yapısı,

CH3
|
C H N(CH ) + H O C H _ N _ 0 + H O
|
CH3

 İç tuz yapısındaki deterjanların yapısı,

O O
|| ||
C H N(CH ) + Cl _ CH _ C _ Ona C H N(CH ) _ CH _ C _ O + ​

 

NaCl

 İyonik olmayan deterjanların yapısı,

C H OH + nCH _ CH C H (OCH CH ) OH

• Sıvı Bulaşık Deterjanı:
Gerekli Malzemeler:
• LABSA (Lineer Alkil Benzen Sülfonit Asit),
• Lauryl alkol (C12H25-OH) ,
• KokoDiethanolamin,
• Triethanol amin,
• Sodyum Laureth Eter Sülfat
• Su (H2O),
• Caustic sodyum hidroksit (%45’lik sodyum hidroksit çözeltisi)
• Formaldehit
• Esans
• EDTA
• Tuz
Yapılışı
Önce 837lt suyun içerisinde 100kg LABSA yavaş yedirilerek karıştırıldı..LABSA ‘nın karışımı tamamlanınca 10 kg’lik Kokodiethanolamin ve 20kg triethanolamin ilave edildi. Daha sonra 17 kg Lauryl alkol ilave edildi.Viskositesi (akışkanlığı) ayarlandı. Bu işlem bitince 10kg’lik Sodyum Laureth Eter Sülfat eklendi. 6kg oranında Tuz(NaCI) katıldı.Ürünün raf ömrünü uzatmak amacıyla formaldehit ilave edildi.Daha sonra EDTA katıldı.En son da esansı ilave edildi.Böylece gerekli maddelerin hepsi kazanlara katılmış oldu.
60 der/dak redükter ile Karışma işlemi bittikten sonra dolum varillerinden bidonlara aktarıldı. pH değeri 6,5-,7,5 arasında ve Rf değeri 13 tür.Ve sıvı deterjan piyasaya sürülmek için hazır bir duruma getirildi.Üretilen deterjan çeşitli boyutlarda bidonlara aktarıldı.

Deterjan imalatı sırasında çeşitli kriterlere uyulmalıdır. Öncelikle kimyasal maddelerin birbirleriyle uyumlu olmaları gerekmektedir.Ayrıca maddelerimiz birbirlerini tamamlayıcı özellikte olmalıdır.
Örneğin;Labsa yağı çözer ama elleri tahriş eder.Lauryl alkol temizler ancak kıvam yapmaz.Sodyum Sülfat Islatır ama durulama güçlüğü verir.Dietanolamin su fazına geçmede yardımcı olur.Bu bileşikler birbirlerini tamamlayıcı özellikte olduklarından kullanılırlar.

Sıvı deterjanın Hammaddeleri
Büyük hacimlerde yüzey aktif organik bileşikler sabun ve deterjan üretiminde kullanılırlar. Lineer alkilbenzen sulfonat (LAS) ve yağ alkolü sülfatı, bunlara örnek oluştururlar. Aynı durum, sabunların ana maddesi olan yağ asitleri için de doğrudur. Bu amaçla oleum, sud kostik, çeşitli sodyum fosfatlar ve ürün ağırlığının %3 veya daha azını oluşturan, çok sayıdaki katkı maddelerin büyük bölümü satın alınır.

Köpük Ayarlayıcı Maddeler :
Bu maddeler ya köpüğün sabit kalmasını veya köpüğün azalmasını sağlarlar. Genellikle yüzey aktif madde ile birlikte kullanılırlar. Bu maddelerin ortak bir kimyasal yapısı yoktur. Genellikle her bir yüzey aktif madde için özel bir köpük ayarlayıcı kullanılır. Köpüğün kalıcı olmasını sağlayan maddelere örnek olarak, laurik etanolamit, alkilbenzen sülfonat ve laurik alkol-alkilsülfat verilebilir. Köpük azaltan maddeler genellikle hidrofobik
maddelerdir. Bunlara örnek olarak da uzun zincirli yağ asitleri, silikonlar ve hidrofobik iyonik olmayan yüzey aktif maddeler verilebilir.

• Sıvı El Sabunu:
Sıvı el sabunu temelde bulaşık deterjanı imalatına benzer şekilde üretilir.Ancak elin yapısı daha farklı ve hassas olduğundan el sabunu yapımından farklılıklar mevcuttur.
Gerekli Malzemeler:
• Sodyum Laureth Eter Sülfat (SLES)
• Betain
• KokoDiethanolamin
• Gliserin
• Tuz
• Lauryl alkol
• Sedef
• Sodyum Alkan Sülfat
• Formaldehit(Koruyucu)
• Koku

Yapılışı: 790 lt su içerisinde120 kg SLES yedirilerek karıştırıldı.SLES karışımı tamamlandıktan sonra 30 kg KokoDiethanolamin kazana aktarıldı.15 kg lauryl alkol ,15 kg Sodyum Alkan Sülfat eklendi.Vizkosite ve pH ayarları yapıldı.2 kg Betain belirli miktarlarda gliserin, tuz ,sedef ve,formaldehit ilave edildi.Karışım kazandan çeşitli ebatlardaki bidonlara aktarıldı.

• Camsil:
Cam gibi çizilebilen ve hassas yüzeye sahip olan bölgelerin temizlenmesinde kullanılan maddelerdir.
Kullanılan Malzemeler:
• İzopropil alkol
• Lutensol T08 (Oxo alkol)
• Esans
• Boyar madde
Yapılışı: 20 lt izopropil alkol ve 5 lt oxo alkol alınarak karıştırıldı.Alkolden gelen kokuyu gidermek amacıyla esans ilave edildi.Daha sonra boyar madde ilave edildi ve 300 lt’ye seyreltildi.Bidonlara aktarıldı.
• Kir Ve Cila Sökücü:
Cilalı ve kirli yüzeyleri temizlemek amacıyla kullanılan likit malzemelerdir.
Kullanılan Malzemeler:Sodyum Alkan Sülfonat,İzopropil Alkol,Aseton,Solvent,Köpük giderici madde(Laurik etanolamit) ,Solvent ,Boyar madde,Esans,Su
Yapılışı: Gerekli malzemeler sırayla kazana aktarıldı. Seyreltme işlemi uygulandı ve karıştırlıdı

• Kireç Çözücü:
Sert sulardan kaynaklanan ve lavabo,çaydanlık gibi bölgelerde birikmeye neden olan bölgeleri temizlemek amacıyla kullanılır.
Kullanılan Malzemeler:
• Nitrik Asit
• Su(H2O)
Yapılışı:50lt Nitrik asit ve 150 lt su kazana aktarıldı karıştırıldı. Daha sonra da bidonlara aktarıldı.
• Bulaşık Makinesi Parlatıcısı:
Kullanılan Malzemeler:
• Fosforik Asit ve Sitrik Asit
• İzopropilalkol ve parlaklık sağlayan madde
• Yapılışı:
150 ml Fosforik asit alındı.Sitrik asitin 1 kg’ı suda çözüldü.Bu ikisi karıştırıldı.5 lt izopropilalkol ilave edildi en son olarak da parlaklık sağlayan madde ilave edildi.60 kg’a seyreltildi.​

Çamaşır Deterjanları:
Deterjanın Etkisini Arttıran Maddeler :
Bu amaçla daha ziyade sodyumtripolifosfat gibi kompleks fosfatlar kullanılır. Bu maddeler suda bulunan ve sertlik veren Ca ve Mg iyonlarını komleks oluşturarak bağladıklarından çökmeleri önlenmiş olur. Ayrıca suya geçmiş olan kirlerin çamaşır üzerine tekrar çökmesine mani olurlar. Kompleks polifosfatlar kullanılarak hazırlanmış bir deterjanla, karışım oranlarının iyi olması halinde iyi bir temizleme sağlanır. Deterjan etkisiniarttırdıklarından, deterjan maliyetini düşürürler. Deterjanların bileşiminde, yüzey aktif madde, köpük ayarlayıcı ve yüzey aktif maddenin etkisini arttıran maddeler yanında %3 oranında katkı maddeleri de bulunur.
Deterjan Katkı Maddeleri :
Korozyon inhibitörü olarak kullanılan sodyum silikat (Na SiO ), çamaşır makinesinin metal kısmını ve tabakları korur. Benzotriazol, Alman gümüşü gibi metalleri korur. Korozyon inhibitörlerinin etkisini artırır. Karboksimetil selüloz, tekrar çökmeyi önlemek için kullanılır. Kumaşının parlak olmasını sağlamak için UV ışını görünür ışına çevrilebilen floresan maddeler kullanılır: Mavileştiren maddeler, kumaşın sararma yatkınlığını önler. Ultramarin mavisi (çivit) gibi maddelerdir. Peroksijen yapılı ağartıcılar, yüksek sıcaklıkta etkili bileşiklerdir.
• Protein Ve Kan Sökücü Deterjan:
Kullanılan Malzemeler:
• Enzim
• Sodyumbikarbonat
• Tripolifosfat
Yapılışı:
60 kg enzim 60 kg sodyumbikarbonat ve 80kg tripolifosfat alındı.Toz halindeki malzemeler karışım haline getirildi ve ambalajlandı.
• Makinalarda Yardımcı Yıkama Deterjanı:
Gerekli Malzemeler:
• Sodyum silikat
• Sodyumbikarbonat
• Sodyumperborattetrahidrat
• Tripolifosfat
• Sodyumglukarat(NaC6H11O7)
Yapılışı:
Her bileşikten 50’şer kilo alındı ve toz malzemelerin karışımını sağlayan makineye konuldu.Daha sonra toz karışım 30 ‘ar kg’lık bidonlara aktarıldı.
• Oksijenli Ağartıcı:
Gerekli Malzemeler:
• Hidrojen Peroksit(H2O2)
• Stebilizatör
• Oxo Alkol
• Esans
• Boyar madde
Yapılışı: Malzemelerden öncelikle hidrojen peroksit tehlikeli patlayıcı bir maddedir.Malzemelerden uygun miktarlar alınarak karışım şağlandı.Daha sonra bidonlara aktarıldı.

• Çamaşır suyu:
Bitkisel maddelerden yapılmış çamaşırları temizlemek ve beyazlatmak için kullanılan ve alkali hipoklorit halinde aktif kloru, bazen de sodyum perboratı içeren solüsyonlardır. Tüketicilere, çamaşır sularını, üzerinde belirtildiği oranda seyreltmeli (sulandırılmalı), kesinlikle cilde temas ettirilmemeli ve sadece keten ve benzeri çamaşırların temizliğinde kullanılmalı, ipekli ve yünlü çamaşırlarda kullanılmamalıdır.
Çamaşır suyunun Yapılışı:
Gerekli Malzemeler:
Sodyumhipoklorit (NaClO) ‘in %5’lik çözeltisi, Su (H2O)
Yapılışı:
İlk önce Tarım Koruma’dan %30’luk Konsantre Sodyumhipoklorit (NaClO) çözeltisi alındı. .Sonra imalat yerinde %5’e seyreltirildi. Daha sonra kazanlarda yapılan karıştırma işlemi bitince bidonlara dolduruldu. En sonunda 5lt,10,20,30 litrelik bidonlara aktarılarak piyasaya sunulmak üzere hazır hale getirildi. Üretim yaptığımız firmada genellikle endüstriyel malzeme üretimi yapıldı.Toplu yaşanan hastane,okul gibi kurumlara satılmak üzere hazırlanan malzememize esans koku gibi ekstra ürünler kullanma ihtiyacı duymadık.

• Tuz Ruhu:
En az % 18 hidroklorik asit ( HCl) içeren solüsyonlardır.% 35-37 lik hidroklorik asidin (HCI) seyreltilmesinden (sulandırılmasından) elde edilmiştir. Sadece hidroklorik asit kullanıldı bir başka asit karıştırılmadı.. Tuzruhu, kapalı ambalajlar ve cam veya polietilen kaplar içinde piyasaya sunumu yapıldı.Ağızları hava sızdırmayacak şekilde kapatıldı ve amyant veya polietilen conta kullanıldı.
Deterjanların Çevreye Etkisi :
1960 ve 1970’lerde deterjanlar?n bileşimleri, çevreyi koruma düşüncesiyle hızlı değişimler uğramışlardır. Deterjanlardan kaynaklanan (sularda sürüklenen) fosfatlar, göl sularında ötrifikasyona neden olmakta ve bu nedenle deterjanlara fosfatların katılması, bazı ülkelerde yasaklanmış bulunmaktadır. Deterjan endüstrileri tarafından takınılan tavır, atık su işlem ünitelerinde özel işlemlerle atık sulardan fosfatların uzaklaştırılabileceği şeklindedir; ayrıca fosfatların zehirli olduğu konusu da yeterince ispatlanmamıştır ve bunların yerine başka maddelerin konulması da pek istenen bir çözüm yolu değildir. Sabun ve deterjan endüstrileri ve bunları donatanların karşı karşıya geldikleri muazzam bir görev, yeni malzemelerin çevre üzerindeki etkilerinin araştırılmasıdır. Bu karmaşık problemin çözülmesinden önce, çok sayıda araştırmanın yapılması gerekmektedir.

Su kirlenmesini kontrol ve önleme konusunun önem kazanması nedeniyle, ürün-geliştirme işiyle görevli kimyager ve kimya mühendisleri son yıllarda atık su işleme ünitelerinde ve yüzey sularında (akarsular) yer alan mikrobik etki tarafından, ev ve endüstri deterjanlarının, kolaylıkla bozundurulabilen türde olmaları üzerinde durmaktadırlar. Bu yeni parametre, deterjan endüstrisinin yeni ürünler geliştirmede göz önünde bulundurduğu işlerlik, yeterlik ve fiyat faktörlerine katılmıştır.
Tetrapropilenden türetilmiş alkilbenzen sulfonat gibi bir kısım surfaktanlar, yavaş yavaş parçalanırlar ve geride kalıcı bir atık bırakırlar. Mikrobik etki tarafından surfaktanların kolay bozunabilirlikleri, biyolojik parçalanabilirlikleri olarak adlandırılır. Bu konuda testler ve standartlar ortaya konulmuştur. Bunun gibi standartlar, geniş bir uygulama alanı bulabilmek için, çevre koşullarında değişim genişliğine sahip olmalıdır. Yetersiz atık işlem prosesleri ile, yalnız kısmen parçalanabilen malzemeler, daha yapay biyolojik işlem sistemleri tarafından tamamıyla bozundurulabilirler. Nehir suyunun da yavaş yavaş yok olma ölçütü veya atık su işleme ünitelerinde kullanılan biyolojik proseslerin tekrarı, biyolojik parçalanabilirliğin ölçülmesinde kullanılan, yaygın testlerden sadece bir kısmıdır.
Birkaç yıldan bu yana yürütülen araştırma esas alınarak, deterjan endüstrilerinin daha kolay parçalanabilen deterjanlar kullanmaları için belirli bir tarih, 31 Kasım 1965 seçilmiştir. Tam bir dönüş herkesin amacıdır ve bu konuda atılan en önemli adım, tetrapropilen benzensülfonatın (TPBS) diğerlerinin yerini almasıdır. Bu deterjan malzemesi, deterjan endüstrisinin ham maddesidir. Bulaşık ve çamaşır yıkama deterjanlarında kullanılan yüzey aktif maddeler pazarında, ağırlık olarak %70’lik paya sahiptir. Yılda yaklaşık 250 milyon kg civarında bir tüketim gücüne erişmiştir. TPBS; Benzenin önce bir propilen tetramer ile alkillendirilmesi ve sonra, benzen halkasının sulfonasyonu ile üretilir. Propilen tetramer, dallanmış izomerlerin bir karışımından ibarettir ve pek azı, düz zincirli alkil gruplarına sahiptir. Daha kolay parçalanabilen yüzey aktif bir maddenin bulunabilmesi konusunda yapılan çalışma, alkil benzen oluşturmak için, düz zincirli bir hidrokarbon geliştirilmiştir. Düz zincirli maddeler, daha kolay parçalanabilen deterjanlar verir ve deterjan formülasyonuna kolaylıkla uyar. ​
Devamını Oku

Kimyasal Bağlar ve Çeşitleri Nelerdir?

Kimyasal Bağlar ve Çeşitleri Nelerdir?
0

BEĞENDİM

ABONE OL

KİMYASAL BAĞLAR

Kimyasal bağ, moleküllerde atomları bir arada tutan kuvvettir. Atomlar daha düşük enerjili duruma erişmek için bir araya gelirler. Bir bağın oluşabilmesi için atomlar tek başına bulundukları zamankinden daha kararlı olmalıdırlar. Genelleme yapmak gerekirse bağlar oluşurken dışarıya enerji verirler. Atomlar bağ yaparken, elektron dizilişlerini soy gazlara benzetmeye çalışırlar. Bir atomun yapabileceği bağ sayısı, sahip olduğu veya az enerji ile sahip olduğu veya az enerji ile sahip olabileceği yarı dolu orbital sayısına eşittir. Soy gazların bileşik oluşturamamasının sebebi bütün orbitallerinin dolu olmasıdır. Elektron yapıları farklı olan atomlar değişik biçimlerde bir araya gelerek kimyasal bağ oluştururlar;
. Bir atomdan diğer bir atoma elektron aktarılmasıyla
. İki atomun ortak elektron kullanmasıyla

Not: Elektron alış verişi ya da elektron ortaklaşmasının nedeni; atomların kararlı hale gelebilmek için elektron düzenlerini, soy gazlarınkine benzetme isteğidir. Soy gazların 8 değerlik elektronuna sahip oldukları için elektron sayısı 8’e tamamlanır. Buna oktet kuralı denir.

İYONİK BAĞLAR
İyonik bağlar, metaller ile ametaller arasında metallerin elektron vermesi ametallerin elektron almasıyla oluşan bağlanmadır. Metaller elektron vererek (+) değerlik, ametaller elektron alarak (-) değerlik alırlar. Bu şekilde oluşan (+) ve (-) yükler birbirini büyük bir kuvvetle çekerler. Bu çekim iyonik bağın oluşumuna sebep olur. Onun için iyonik bağlı bileşikleri ayrıştırmak zordur. Elektron aktarımıyla oluşan bileşiklerde, kaybedilen ve kazanılan elektron sayıları eşit olmalıdır.
. İyonik katılar belirli bir kristal yapı oluştururlar.
. İyonik bağlı bileşikler oda sıcaklığında katı halde bulunurlar.
. İyonik bileşikler katı halde elektriği iletmez. Sıvı halde ve çözeltileri elektriği iletirler.

KOVALENT BAĞLAR
Hidrojenin ametallerle ya da ametallerin kendi arlarında elektronlarını ortaklaşa kullanarak oluşturulan bağa kovalent bağ denir. Değerlik elektronları elementin simgesi çevresinde noktalarla gösterilerek elektron ortaklaşması gösterilir. Bu tür formüllere elektron nokta formülleri denir.
. Periyodik cetvelin A gruplarında değerlik elektron sayısı grup numarasına eşit olduğundan grup numarası, simge çevresine konulacak elektron sayısını gösterir.
. İki atom arasına konulan noktalar her iki atom için de sayılır ve kararlı moleküller de atomların simgeleri çevresinde toplam nokta sayısı 8 ‘dir.
Moleküllerin elektron nokta formülleri yazılırken;
. Molekülü oluşturan atomların değerlik elektronları belirlenir.
. Yapacakları bağ sayıları saptanır, çok bağ yapanlar merkez atomu olarak alınır.
. Merkez atomu birden fazla ise merkez atomları birbirine bağlanacak şekilde yazılır.
. Değerlik elektronlar, atomların çevresine oktet kuralına uyacak şekilde dağıtılır.
a.Apolar Kovalent Bağ: Kutupsuz bağ, yani (+), (-) kutbu yoktur. İki hidrojen atomu elektronları ortaklaşa kullanarak bağ oluştururlar. İki atom arasındaki bağ H-H şeklinde gösterilir. Flor atomunun son yörüngesinde 7 elektronu vardır ve bir tane yarı dolu orbitali vardır. 2 flor atomu arasında elektronlar ortaklaşa kullanılarak bir bağ oluşur. Oksijenin son yörüngesinde 6 elektronu vardır. 2 tane yarı dolu orbitali vardır. Buna göre 2 tane bağ oluştururlar.
b.Polar Kovalent Bağlar: Farklı ametaller arasında oluşan bağa polar kovalent bağ denir. Elektronlar iki atom arasında eşit olarak paylaşılmadığından kutuplaşma oluşur.
Hidrojen ve Flor elektron ortaklığı ile bileşik oluşturmuş durumdadır. Florun elektron alması yani elektronu kendisine çekme gücü hidrojenden daha fazla olduğundan elektron kısmen de olsa Flor tarafındadır. Dolayısıyla Flor kısmen (-), Hidrojen ise kısmen (+) yüklenmiş olur. Bu olaya kutuplaşma denir. Bu tür bağa polar kovalent bağ denir.
Not: Bazı hallerde ortaklaşılan her iki elektron da bir atom tarafından verilir. Böyle bağlara koordine kovalent bağ denir.

BİR ATOMUN YAPABİLECEĞİ BAĞ SAYISI
Bir atomu yapabileceği bağ sayısı; o atomun sahip olduğu veya çok az enerji ile sahip olabileceği yarı dolu orbital sayısı kadardır. Bir alt yörüngeden bir üst yörüngeye elektron uyarılarak yarı dolu orbital oluşturma çok enerji istediğinden bağ yapmaya elverişli olamaz.

BAĞ ENERJİLERİ
Kimyasal bağ oluşurken açığa çıkan enerji, bu bağları kırmak için moleküle verilmesi gereken enerjiye eşittir. Bu enerjiye bağ enerjisi denir. Bağ enerjisi ne kadar büyükse oluşan bileşik o kadar sağlamdır. Moleküllerde iki atom arasındaki bağ sayısı arttıkça bağ uzunlukları azalır ve bağ enerjileri artar. Bağın iyon karakteri arttıkça, iyonlar arasındaki çekme kuvvetleri artacağından bağı koparmak daha çok enerji ister. İki atomlu moleküllerde 1 mol XY’nin ayrışması için gereken enerjiye molar bağ enerjisi denir.
Molekül Polarlığı, Molekül Geometrisi ve Hibritleşme
İki atomlu bir molekülün polar olup olmadığını tahmin etmek kolaydır. Molekül aynı cins iki atomdan meydana gelmişse atomlar arasındaki bağ ve molekül apolardır. İki atomlu molekülde atomlar farklı ise molekül ve bağlar polardır. İkiden fazla atom ihtiva eden moleküllerinin polarlığını tahmin etmek oldukça zordur. Molekülün içindeki bağlar polar olmasına rağmen, molekülün kendisi polar olmayabilir.
Hibritleşme (melezleşme):
Bir atomun son periyodundaki dolu ve yarı dolu orbitallerin kaynaşarak özdeş yeni orbitaller oluşturması olayına hibritleşme denir. yeni oluşan orbitallere hibrit orbitalleri denir. Elektronlar merkez atoma en uzakta bulunacak şekilde yerleşirler.
Not: Hibritleşme yalnız yarı dolmuş orbitallerin değil, dolu ve yarı dolu bütün değerlik orbitalleri arasında olur. Ancak merkezi atomun yapabileceği bağ sayısı onun sahip olabileceği yarı dolu orbital sayısı kadardır. Hibritleşme, kimyasal bağ sırasında gerçekleşir. Serbest haldeki atomlarda söz konusu değildir. Hibrit orbitalleri uzayda belirli şekilde yönlenirler ve bu durum molekülün geometrik biçimini belirler.

ÖZETLERSEK:
XY türü moleküller:
( 1A ile 7A, 2A ile 6A, 3A ile 5A)
Moleküller ve bağlar polardır. Molekül biçimi doğrusaldır.

XY 2 türü moleküller:

X: 2A Y: 7A veya hidrojen ise;
Moleküller apolar, bağlar polardır. Molekül biçimi doğrusal, hibritleşme sp dir.

X: 4A Y: 2A veya 6A ise;
Molekül apolar, bağlar polardır. Molekül biçimi doğrusal, hibritleşme sp dir.

X: 6A Y: 1A veya 7A ise;
Molekül ve bağlar polardır. Molekül biçimi kırık doğru, hibritleşme sp ‘tür.

XY 3 türü moleküller:

X: 3A Y:7A veya hidrojen ise;
Moleküller apolar, bağlar polardır. Molekül biçimi düzlem üçgen, hibritleşme sp ‘dir

X:5A Y:7Aveya 1A grubunda ise;
Molekül ve bağlar polardır. Molekül biçimi üçgen piramit, hibritleşme sp ‘tür.

XY 4 türü moleküller:
Molekül apolar, bağlar polardır. Molekül biçimi düzgün dörtyüzlü, hibritleşme sp ‘tür.

İKİLİ VE ÜÇLÜ BAĞLAR
Bazı moleküllerde, iki atom birbirine iki ya da üç bağ ile bağlanabilirler. İki atom arasındaki ilk oluşan bağ sigma bağıdır. Diğer bağlar ise pi bağıdır. İki atom arasında ikili bağ varsa biri sigma, diğeri pi bağıdır. Üçlü bağ varsa bir tanesi sigma, diğerleri pi bağıdır. İki atom arasında sigma bağı olmadan pi bağı oluşamaz.
Karbon Atomunun Hibritleşmesi:
Karbon atomu 4 bağın tamamını tek bağ olarak yapmışsa, hiritleşmesi sp ‘tür. Karbon atomuna bir tane ikili bağ varsa, hibritleşmesi sp ‘dir. Yani bir pi bağı ise hibritleşme sp ‘dir. Karbon atomu üçlü bağ yapmışsa ya da her iki tarafında ikili bağ varsa hibritleşmesi sp dir. Yani iki tane pi bağı bağlı ise hibritleşme sp’dir.
Sp hibritleşmesi: Eğer karbon atomu, yalnız iki atoma bağlı ve kararlı molekül oluşturmuşsa, bu durumda karbon atomu sp hibritleşmesine uğramıştır.
Sp2 hiritleşmesi: Eğer karbon atomu başka bir atoma bir çift bağ ile bağlanmış ise karbon atomu sp2 hibritleşmesine uğramıştır.

MOLEKÜL ARASI BAĞLAR
Maddeler gaz halinde iken moleküller hemen hemen birbirinden bağımsız hareket ederler ve moleküller arasında herhangi bir itme ve çekme kuvveti yok denecek kadar azdır. Maddeler sıvı hale getirildiklerinde ya da katı halde bulunduklarında moleküller birbirine yaklaşacağından moleküller arasında bir itme ve çekme kuvveti oluşacaktır. Bu etkileşmeye molekül arası bağ denir. Maddelerin erime ve kaynama noktalarının yüksek ya da düşük olması molekül arasında oluşan bağların kuvvetiyle ilişkilidir.
Van Der Waals Çekimleri:
Kovalent bağlı apolar moleküllerde ve soygazlarda yoğun fazlarda sadece kütlelerinden kaynaklanan bir çekim kuvveti oluşmaktadır. Bu kuvvete van der waals bağları denir. Yoğun fazda sadece van der vaals bağı bulunan maddelere moleküler maddeler denir. Moleküler maddelerin mol ağırlıkları arttıkça kaynama ve erime noktaları yükselir. Sıvı ve katı halde yalnızca Van Der Waals bağları bulunduran maddeler;
. Soygazlar (He, Ne, Ar, Kr, Xe, Rn)
. Moleküller halinde bulunan ametaller (H 2 , O 2 , N 2 , F 2 , Cl 2 , Br 2 , I 2 , P 4 )
. Apolar olan bileşikler (CH 4 , CO 2 , C 2 H 6 )
Dipol – Dipol Etkileşimi:
Bu tür etkileşim polar moleküller arasında görülür. Polar moleküller sürekli bir kısmı (+), bir kısmı (-) uca sahiptirler. İki polar molekül birbirine yaklaşırken birinin pozitif ucu diğerinin negatif ucuna yönelir. Böylece bir molekülün (+) ucu ile diğerinin (-) ucu arasında bir elektrostatik çekme oluşur. Ancak bu çekme zıt yüklü iyonlar arasındaki çekmeden çok zayıftır.
. Polar moleküller arasındaki bu kuvvetler, van der Walls kuvvetlerinden daha büyüktür. Bu nedenle aynı molekül kütlesine sahip iki maddeden polar olanının erime ve kaynama noktası daha yüksektir.
. Polar moleküllerin oluşturduğu katılar, su gibi polar çözücülerde iyi çözünürler. Bu çözünme polar etkileşimle sağlanır.

HİDROJENİN BAĞLARI
Hidrojen atomu, elektronları kuvvetli çeken N, O ve F atomları ile kimyasal bağ oluşturduğunda, elektronunu büyük ölçüde yitirir ve diğer polar moleküllerdekine göre daha etkin ir artı yük kazanır. Bu yük nedeniyle hidrojen komşu moleküllerin eksi ucuyla moleküller arası bir bağ oluşur. Bu bağa hidrojen bağı denir. Hidrojen bağı, diğer polar moleküllerdeki dipol dipol etkileşiminden farklı ve güçlüdür.
. Hidrojen bağlarını koparmak için gereken enerji, 5 ile 10 kkal/mol dolaylarındadır. Hidrojen bağları kovalent bağlara göre çok zayıftır. Bu nedenle su ısıtılınca öncelikle hidrojen bağları kopar, gaz haline gelir. H 2 ile O 2 ‘ye ayrışmaz.

. Hidrojen bağları, polar etkileşiminden çok daha güçlüdür. Moleküller arası yalnız van der Walls kuvvetlerine sahip olduğundan kaynama noktası çok düşüktür.
Suda Çözünme:
Hidrojen bağı oluşturabilen iki farklı molekül birbirleriyle de hidrojen bağı oluştururlar. Bu durum hidrojen bağı oluşturabilen maddelerin suda iyi çözünmelerini sağlar. Hangi tür kuvvetle bağlanırsa bağlansın oluşan katılara moleküllü katı denir. Genelde moleküllü katıların erime noktaları, katılara göre daha düşüktür.

METAL BAĞI
Metal atomlarını katı ve sıvı halde bir arada tutan kuvvetlere metal bağı denir. Değerlik elektronlarının serbest hareketleri nedeniyle metaller, elektrik akımı ve ısıyı iyi iletirler. Metal kristalinde basınç etkisiyle kristalin bir kısmının kayması asıl yapıyı bozmaz. Bu nedenle metaller dövülerek, tel ve levha haline getirilebilirler. Metallerin erime noktaları genelde moleküllü katılardan yüksektir. Oda koşullarında hemen tümü katıdır. Periyodik cetvelde;
. Bir grupta yukarıdan aşağıya doğru atom çapı büyüdükçe genel olarak metal bağı zayıflar, dolayısıyla erime noktası düşer.
. Bir sırada soldan sağa doğru atom çapı küçülüp, değerlik elektron sayısı arttıkça metal bağı kuvvetlenir, erime noktası yükselir.
Moleküllü katı grubuna giren ametallerle metallerin özellikleri;
Metaller;
. Elektrik akımını ve ısıyı iyi iletirler.
. Erime noktaları yüksektir.
. Ametallere göre değerlik elektronları çok daha hareketlidir.
. Dövülebilme, çekilebilme özelliğine sahiptirler ve şekil verilebilirler.
. Ametallerle birleşirler.
. İyonları daima artı yüklüdür.
Ametaller;
. Isı ve elektrik akımını iyi iletmezler.
. Erime noktaları düşüktür.
. Metal yumuşaklığına sahip değillerdir. Kırılgandırlar.
. Birbirleriyle ve metallerle birleşirler.

İYON BAĞI:
Elektronlarını kolay kaybeden atomlarla, kolay elektron alabilen atomlar arasında oluşan bağa iyon bağı denir. Artı ve eksi yüklü iyonlardan oluşan katılara iyonlu katı denir. İyonlu katılarda, her iyonun karşıt yüklü iyonlarla çevrildiği bir örgü bulunduğundan birkaç atomun bir araya geldiği moleküllerin varlığından söz edilemez. İyon kristallerinde elektronlar, iyonların çekirdekleri tarafından kuvvetli çekildiklerinden serbest halde bulunmazlar. Bir iyon kristalinin bir kısmının basınç etkisinde kalması durumunda iyonlar kayar ve aynı adlı elektrik yükleri birbirlerinin yanına gelir. Aynı yüklü iyonların birbirlerini itmesiyle kristal ikiye ayrılır. Buna göre metalik katılarda olduğu gibi iyonlu katılar dövülüp, tel ve levha haline getirilemezler. İyonlu katılar eritildiklerinde ya da suda çözündüklerinde elektrik akımını iletirler. Polar moleküllü maddeler ve iyon bileşikleri polar çözücülerde, apolar bileşikler apolar çözücülerde daha kolay çözünürler.

Devamını Oku

Vanadyum nedir ?

Vanadyum nedir ?
0

BEĞENDİM

ABONE OL

Sembol: V
Atom numarası: 23
Atom ağırlığı: 50.9415 g/mol
Oda koşullarında (25°C 298 K): Gümüşümsü gri renkli katı
****l
d-blok elementi
Vanadyum ****li ilk olarak 1801 yılında Andres Manuel del Rio tarafından keşfedilmiştir.
Bilinen minerali vanadinit (3Pb3(VO4)2.PbCl2), potasyum uaranil vanadat 2K(UO2)VO4.3H2O ve vanadyum sülfürdür. Niobyum ve tantal minerallerinde de çok miktarda bulunur.
Vanadyum mineralinin NaCl veya Na2CO3 ile 850°C’ de reaksiyonu sonucunda elde edilen NaVO3 bileşiği su içerisinde çözülür. Çözelti kırmızı çökelek verene kadar asitlendirilir. V2O5 oksidi elde edilir. Bu oksidin kalsiyum ile indirgenmesi ile saf olarak elde edilir.
Diğer bir yöntem ise VCl5 bileşiğinin hidrojen gazı veya magnezyum ile indirgenmesi ile saf olarak elde edilir.
Fiziksel Özellikleri
Yoğunluğu: 6.110 g/mL
Erime noktası: 1910 °C (2183K)
Kaynama noktası: 3407°C (3680K)
Molar hacmi: 8.32 ml/mol
Mineral Sertliği: 7.0
Isı iletkenliği(300K): 0.307 W cm-1 K-1
Özgül ısı: 0.490 J g-1 K-1
Buharlaşma Entalpisi: 453 kJ mol-1
Atomlaşma Entalpisi: 515kJ mol-1

Devamını Oku

Kimyasal Hesaplamalar – Lise 2 Kimya (10.Sınıf) Konuları

Kimyasal Hesaplamalar – Lise 2 Kimya (10.Sınıf) Konuları
0

BEĞENDİM

ABONE OL

KİMYASAL HESAPLAMALAR

Kimyasal hesaplama yapabilmek için;
1- Tepkime denklemi doğru olarak yazılarak eşitlenmelidir. Bir tepkime bize şu bilgileri verir.

N2(g) + 3H2(g) 2NH3(g)

1 mol 3 mol 2 mol ( Mol sayısı korunmadı)
22,4 litre 3×22,4 litre 2×22,4 litre (N.Ş.A) (Korunmadı)
28 gram 6 gram 34 gram (Kütle korundu)
2 mol atom 6 mol atom 8 mol atom (Atom s. Korundu)
2 litre 3 litre 2 litre ( Sadece gazlar için)
6,02×1023 3x 6,02×1023 2x 6,02×1023

2- Başlangıçta bir maddenin miktarı verilirse o miktar önce mole çevrilir. Tepkime denkleminden faydalanılarak istenilen maddelerin mol sayıları hesaplanır.
3- Hesaplanan mol sayıları istenilen birimlere çevrilir.

Örnek : 3,2 gram CH4 gazı yeteri kadar O2 gazı ile yakılırsa,
A) Kaç mol O2 harcanır ? B) N.Ş.A da kaç litre hava harcanır. ? C) Kaç gram CO2 gazı oluşur ve N.Ş.A da kaç litredir ? D) Kaç tane H2O molekülü oluşur ? ( C=12 H=1 O=16 N=6×1023)
n= m/Ma ise n=3,2/16= 0,2 mol CH4

CH4 + 2O2 —>CO2 + 2H2O
0,2 0,4 0,2 0,4

A) 0,4 mol O2 harcanır. B) 0,4x5x22,4=44,8 litre hava harcanır. (Havanın 1/5 i O2 dir.)
C) 0,2×44=8,8 gram CO2 oluşur. D) 0,4x6x1023 = 2,4×1023 tane H2O oluşur.

Tepkime Çeşitleri :

1- Yanma Tepkimeleri: Yanma hava oksijeniyle (O2) tepkime demektir. 2 çeşit yanma vardır.

A) Yavaş Yanma: Bu tür yanmalarda bir alev yada parlaklık görülmez. Örneğin demirin paslanması, solunum..
B) Hızlı Yanma : Bu çeşit yanmalarda alev yada parlaklık gözükür ve olay kısa sürer. Örneğin mumun yanması, kağıdın yanması..

Bir element yanarsa oksiti, bir bileşik yanarsa bileşikteki elementlerin ayrı ayrı oksitleri oluşur.

Örnek : C + O2 —–>CO2 H2 + 1/2 O2 ——>H2O

CS2 + 3O2 CO2 + 2SO2 CO + 1/2O2 CO2

CO2 + O2 Yanmaz. Soygazlar ( He, Ne, Ar, Kr, Xe, Rd) yanmazlar.

Asit- Baz Tepkimeleri : Asitlerle bazların tepkimelerinden tuz ve su oluşur.

Asit çözeltisi + Baz çözeltisi Tuz + su

HCl + NaOH——> NaCl + H2O

2H3PO4 + 3Ca(OH)2 Ca3(PO4)2 + 6H2O

Aktif Metallerin Asit Çözeltileriyle Olan Tepkimeleri: Aktif metaller asit çözeltileriyle tepkimeye girerlerse tuz ve H2 gazı oluşur.

Na + HCl ——>NaCl + 1/2H2 Al + 3HNO3 —–>Al(NO3)3 + 3/2H2

Yarı Soy Metallerin Asitlerle Olan Tepkimeleri : Yarı soy metaller ( Cu, Hg, Ag) Soy metaller ise Au ve Pt dir.

Yarı soy metaller yapısında oksijen bulunan kuvvetli ve derişik asit çözeltileriyle tepkime verirler. Tepkime sonunda tuz, asidin yapısından gelen bir oksit ve su oluşur. Bu tür tepkimelerde H2 gazı oluşmaz.

Cu + 4HNO3 Cu(NO3)2 +2 NO2(g) +2 H2O

2Ag +2 H2SO4 Ag2SO4 + SO2 +2H2O

FORMÜL BULMA

Bir molekülü oluşturan atomların bağıl sayılarını veren formüle basit formül (kaba formül), molekülü oluşturan atomların gerçek sayılarını veren formüle de molekül formülü denir.

Molekül formülü basit formülün tam sayılı katlarıdır.

(Basit formül) n= molekül formülü

MADDE BASİT FORMÜL MOLEKÜL FORMÜLÜ
Amonyak NH3
Glikoz CH2O C6H12O6
Eten CH2 C2H4

Basit formül bulunurken;
1- Verilen madde miktarları mole çevrilir.
2- Bulunan sayılar ilgili maddelerin sağ alt köşelerine yazılır.
3- sayılar tam sayı değilse ya içlerindeki en küçük sayıya bölünür yada uygun bir sayıyla genişletilerek sadeleştirilir.

Örnek -1
Bir organik bileşikte 2,4 gram C, 12,04.1022 tane azot (N) atomu, 0,2 mol O atomu ve 0,6 gram H atomu bulunmaktadır. Bileşiğin basit formülü nedir ?

Çözüm :

nC= 2,4/12 = 0,2 mol C nN= 12,04.1022/6,02.1023= 0,2 mol N nO=0,2 mol nH= 0,6/1= 0,6 mol H

C0,2H0,6N0,2O0,2 dir. Sayılar 0,2 ye bölünürse CH3NO olur.

Örnek-2

0,2 molünde 0,4 mol Pb ve 9,6 gram oksijen içeren bileşiğin basit formülü nedir ?( O=16)

Çözüm:

0,2 molünde 0,4 mol Pb varsa 1 molünde 2 mol Pb vardır. 0,2 molünde 9,6 gram O varsa 1 molünde 48 gram O bulunur.

NO= 48/16 = 3 mol O olur. Formül ise Pb2O3 olur.

Örnek-3

C ve H dan oluşan bir bileşiğin kütlece %25 i H dir. Buna göre bileşiğin basit formülü nedir ?(C=12 H=1)

Çözüm : 75 gram C nC= 75/12 = 6,25 mol nH= 25/1= 25 mol

C6,25H25 her ikisi de 6,25 e bölünürse CH4 bulunur.

Örnek-4

C,H ve O içeren organik bir bileşiğin 4,6 gramı oksijenle yakıldığında 8,8 gram CO2 ile 1,8.1023 tane H2O molekülü oluşmaktadır. Bileşiğin formülü nedir ? (C=12 H=1 O=16)

Çözüm :

X + O2 ——-> CO2 + H2O
4,6 gram 0,2 mol 0,3 mol

bileşikteki karbon 0,2×12= 2,4 gram, bileşikteki hidrojen 0,3×2=0,6 gramdır. Oksijen ise 4,6 -(2,4+0,6) = 1,6 gramdır.

nC=0,2 nH=0,6 nO=0,1 mol C0,2H0,6O0,1 10 ile çarpılırsa C2H6O bulunur
Örnek-5

11,2 gram A ile 3,2 gram B den oluşan bileşiğin formülü AB dir. 22,4 gram A ve 9,6 gram B den oluşan bileşiğin formülü nedir ?

Çözüm :
11,2 gram bileşikte A ise 22,4 gram A2dir. 3,2 gram B yi gösteriyorsa 9,6 gram B B3 olmalıdır. Yani A2B3 dür.

Örnek-6

44 gram Mn ile N.Ş.A da 8,96 litre O2 gazı artansız tepkimeye giriyor. Oluşan bileşiğin formülü nedir ?
( Mn=55)

Çözüm :
nMn= 44/55 = 0,8 mol nO= 8,96/22,4 = 0,4 mol O2 O= 0,8 mol atom dur.

Mn0,8O0,8 her taraf 0,8 bölünürse MnO dur

RADYOAKTİVİTE

Radyoaktiflik, 1896’ da Fransız Kimyacısı Henri Becquerel tarafından bulunmuştur. Becquerel ile Curie’ler, Jotiot, Saddly, Rutherford gibi kimyacıların araştırmaları; bazı ağır kimyasal elementlerin kararlı olmadıklarını ve ışıma yaptıklarını ortaya koydu. Işınım yapan bu maddelerin atom çekirdeklerinin kararsız oldukları görüldü. Atom numarası küçük olan elementlerin proton sayıları ile nötron sayıları oranı yaklaşık birdir (n/p=1). Atom numarası (z) 20’ nin üstünde olan elementlerde nötron/proton oranı gittikçe artar ve çekirdek kararsız hale gelir. Z=83’ den yukarıdaki elementlerin hepsi kararsız yapıdadır. Kararlı hale gelebilmek için bu elementler bazı ışımalar yaparak başka elementlere dönüşürler. İlk kez rastlanan bu olaya “radyoaktiflik” , değişme sürecine de “radyoaktif bozunma” adı verilir. Radyoaktif maddeler üç çeşit ışın yayarlar. Bunlar alfa, beta ve gama ışınlarıdır.

Bozunma Çeşitleri

1) Alfa Bozunması: kararlı olması ağırlığı nedeniyle olanaksız duruma gelen bir çekirdekten iki proton ve iki nötrondan oluşan bir alfa taneciği atılır.Böylece çekirdek kütle numarasından dört, atom numarasından iki birim kaybeder. Başka bir değişle periyodik cetvelde iki basamak aşağı iner. Yapısal olarak bir alfa parçacığı helyum çekirdeğine benzer.

238 234 4 210 206 4
U Th + He(Po Pb + He(
92 90 2 84 82 2

Alfa bozunması, en ağır doğal elementlerde (Uranyum, Polanyum,Radyum) görülen ortak özelliktir. Ama doğrudan kararlı çekirdek oluşturmaz.

2) Beta Bozunması : Çok nötronlu bir çekirdekte, çekirdekten çıkan bir nötron, bir protonla bir elektrona dönüşür. Bu biçimde çıkan elektrona “beta parçacığı” denir. Bu durumda beta bozunmasına uğrayan atomun kütle numarası değişmezken , atom numarası bir birim artar.

n  p¯ + e ¯ 3 3 0
H  He + e
1 2 -1
234 234 0
Th  Pa + e
90 91 -1

3) Gama Bozunması : Genelde gama bozulması yalnız başına gelmez, diğer radyoaktif bozunmalara eşlik eder. Gama ışınları çok yüksek enerjili, kısa dalga boylu maddeden geçerken enerjisini yitirir. Radyoaktif bozunma sonucu oluşan yeni çekirdek üzerindeki fazla enerjiyi gama ışıması şeklinde dışarı vererek daha yüksek enerjili duruma geçer.

240 236 4
Pu U + He
94 92 2

236 236
U  U + 
92 92

4) Pozitiron Bozunması: Pozitron bozunmasına uğrayan bir atomda, bir nötronun protona dönştüğü ve bu esnada özellikleri elektrona benzeyen fakat +1 yüklü olan pozitron oluştuğu kabul edilir. Pozitron bozunması sonucunda kütle numarası değişmez, atom numarası bir birim azalır.

122 122 0
I  Te + e
53 52 +1

5) Nötron Bozunması: Nötron bozunması sonucu yeni bir element oluşmaz, ancak bozunmaya uğrayan atomun izotopu meydana gelir.

87 86 1
Kr  Kr + n
36 36 0

6) Elektron Yakalama: Çok protonlu bir çekirdek, aynı atomun iç yörüngelerinin birinden bir elektron alarak, bir protonu nötrona çevirir ve X ışını salıp, periyodik çizelgede bir birim alta iner. Bu olaya “elektron yakalama” denir.

RADYOAKTİF BOZUNMA BAĞINTISI

Bozunma sonunda kararlı S atomuna dönüşen P radyoaktif elementi için meydana gelen bozunma olayı, aşağıdaki şekilde yazılır.

32 32
P  S + ¯
16 16

Burada görüldüğü gibi kararsız atom bir  parçacığı yayınlayarak kararlı olan atoma dönüşmüştür.

Bir bozunma olayı genel olarak aşağıdaki şekilde ifade edilir.

A atomu  B atomu + radyasyon

N sayıda radyoaktif atom olduğu kabul edilirse, dT zaman aralığında dN kadar atom bozulmaya uğrayacaktır. Bir radyoaktif elementin birim zamanda bozulan atom sayısına o atomun aktivitesi denir. Bozunan dN atom, başlangıçtaki N radyoaktif atom sayısı, geçen dT zaman ve bozulma sabiti,  ile orantılı olacaktır.

dN = –  . N dT (1.1)
Burada (-) işareti dT’ nin artışıyla N’in azalışını gösterir. (1.1) bapıntısı RADYOAKTİF BOZUNMA TEMEL BAĞINTISIDIR. Parçalanma sabiti, her Radyoaktif element için o elemente ait bir sabit olup zamana bağlı değildir. Bu, belirli bir kararsız atomlar grubunda bozulmamış bir atomun aynı bozunma şansına sahip olduğu anl—– gelir, yani radyoaktif atomların bozunma şansı daima sabittir. (1.1) bağıntısından,

 = dN/N dT (1.2)
elde edilir. dT =1 alınırsa (1.2) bağıntısından  = dN/N elde edilir ki bu da bozunma saatinin birim zamanda bozunan atomlarının sayısının, kararsız atomların sayısına bölümü olduğunu gösterir.

Bozunmamış radyoaktif atomların sayısını (1.1) bağıntısının integrali verir. T= 0 anında (başlangıç) No radyoaktif atom olduğu t zaman sonra N radyoaktif atom olduğu kabul edilirse, (1.1) bağıntısının integrali,

N=n T=t
 dN/N =  - dT
N=no T=0

şeklinde yazılır ve buradan aşağıdaki ifade elde edilir:

-t -t
n/no = e n=no e

Bu ifade ise radyoaktif atomların sayısının eksponansiyel olarak azaldığını gösterir.

no t=0 (başlangıç) anında bozunmamış madde miktarı,

n t=t anında bozunmamış madde miktarı,

 kaynakta her bir atomun birim zamanda bozunmaya uğrama olasılığı.

YARI ÖMÜR

Radyoaktif maddenin yarı ömür terimi; aktivite veya radyoaktif atomların sayısının yarıya düşmesi için gerekli olan zamanı anlatır.

T yerine T½ ve n yerine no/2 değeri konulursa;
-T½
no/2 = no e

-T½
½ = e   T½ = ln2

 = 0.693/T½ (1.3) elde edilir.

Bu bağıntı (1.1)bağıntısında yerine konulursa;
-0.693/T½ . t
N = no e

Radyoaktif seriler

Tüm doğal oluşumlu radyoaktif atomlar üç seride toplanır.
9 238
1) Uranyum serisi; yarı ömrü 4.51x 10 sene olan U ile yaratılırlar. Alfa ve beta parçacıklarının yayınımını içerir. Gama ışınlarıda bu dönüşümlerin sonucu olarak ayrıca oluşur.
235 10
2) Aktinyum serisi U den başlar.Yarı ömürleri 7.13×10 senedir.
232 10
3) Throrium serisi; Th ile başlar.Yarı ömürleri 1.39×10 senedir.

Tüm seriler kurşunun kararlı izotoplarında son bulur.

RADYASYON VE ENERJİ

Enerjinin boşlukta yayılabilen bir türü de radyasyondur. Parçacık (partikül) radyasyonu ve elektromanyetik dalga radyasyonu (x ışını,  ışını gibi fotonlar) olmak üzere iki grupta incelenebilir.

Parçacık radyasyonu (elektron, proton, nötron, alfa ışını) parçacığın kütlesi ve hızı (kinetik enerjisi) ile belirlenir.Nükleer parçacıkların elektrik alanda hızlandırılmaları sonucu kazandıkları enerji , genellikle “elektron volt=(eV)” birimi ile ifade edilir. 1 eV, bir elektron yükü taşıyan parçacığın bir voltluk potansiyelle hızlandırılması sureti ile kazandığı enerji miktarıdır.
-19
1 eV, erg cinsinden (1.6×10 J gibi) çok küçük bir değer taşıdığı için pratikte bunun 1000 katı olan kilo elektron volt (keV) veya daha büyük olarak 1keV’un 1000 katı olan milyon elektron volt (MeV) birimleri kullanılır.
2
Bir elektronun kütle enerjisi Einstein’in E=mc formülü (E:Enerji, m:kütle,c:ışık hızı) ile 8.1×10 erg veya 0.51 Mev olarak hesaplanır. Bir MeV ise 1mg kütleyi sadece bir milyonda biri kadar yüksekliğe kaldırabilen enerji miktarıdır.

RADYASYON KAYNAKLARI

A) Doğal radyasyon kaynakları:
1) Kozmik ışınlar ve dünya kabuğunda havada ve suda tabi olarak bulunan radyoaktif izotoplar
2) Vücudun tabi bileşenlerinden olan radyoizotoplar (K-40 ve C-14 gibi)
B) Yapay radyasyon kaynakları:
1) Elektron, nötron, proton gibi parçacıkların hızlandırılması ile elde edilen radyasyonlar (x ışını tüplari ve betatron, siklotron gibi yüksek enerjili parçacık hızlandırıcı cihazlar.)
2) Yapay izotoplar:
Kanser tedavisinde yaygın olarak kullanılan radyoizotoplar:
Co-60 (kobalt): Eksternal radyoterapide kullanılır.
Cs-137 (sezyum): Brakiterapide kullanılır.
Sr-90 (stronsiyum): Kontak ışınlama için kullanılır.
İr-192: İnterstisyel implantasyon ve intralüminal brakiterapide kullanılır.
Ra-226: Brakiterapide kullanımı terk edilmiştir.
İ-131: Up-take yapan tiroid kanserinde sistemik yoldan uygulanır.

ELEKTROMANYETİK RADYASYONLAR

X ve gama ışınları elektromanyetik ışınlardır. Bu ışınlar özellikleri bakımından aynıdır aralarındaki tek fark meydana gelişleridir. X ışınları, çekirdek dışında bulunan elektronlar tarafından meydana gelir Gama ışınları ise atom çekirdeğinin içinde oluşur. X ve gama ışınları iki önemli özelliğe sahiptirler. Bunlardan birincisi, bu radyasyonların uzayda dalga hareketi ile yayılmalarıdır. Bu dalgalar herzaman ışık hızında hareket ederler.
C=.

X ve gama ışınlarının ikinci bir özelliği de, herikisi de foton adı verilen enerji paketlerinden oluşmuş olmalarıdır. Herbir fotonun taşıdığı enerji E=h’dür.
E fotonun enerjisi, h planck sabiti (=6.625×10 joule/s) ve  frekanstır.

A) Gama ışınları:

Gama ışınları kısa dalga boylu elektromanyetik radyasyonlardır. Gama radyasyonu, alfa ve beta yayınımı takiben türev çekirdek tarafından olur. Radyoaktif çekirdekten Alfa ve Beta ışınları yayınlandıktan sonra türev çekirdek uyarılmış halde bulunur. Bu çekirdekte aşırı bir enerji vardır. Çekirdek normal haline geçerken bu aşırı enerjiyi kaybetmesi, çekirdekten bir parçacığın fırlaması şeklinde olmazsa buna İZOMERİK GEÇİŞ denir. Bu sırada bir gama ışını yayınlar.

Yüksek enerjili gama ışınları birkaç santimetre kalınlığındaki kurşundan geçerler. Yüksüz olduklarından elektrik ve manyetik alanlardan etkilenmezler. İyonlaştırıcı özelliğe sahiptirler.

B)Ultraviyole Işınlar :

Diğer bir elektromanyetik radyasyonda ultraviyole radyasyonudur. Bu radyasyon da, en kısa dalga boylu yani en yüksek enerjili bir radyasyondur. Bu radyasyon ancak bir tek atomda iyonlaşmaya yol açabilir. Yani ultraviyole fotonun ancak bir tek primer iyonlaşma yapabilir.

C)X-Işınları:

X-ışınları 1895 yılında Alman Fizikçi Wilhem Canrat Röntgen tarafından
bulunmuştur. X-ışını tüpü, yüksek vakumla havası boşaltılmış cam kılıftan oluşur. Bir ucunda katot diğer ucunda anot bulunur. Bunların herikisi de tüp içinde lehimle sımsıkı mühürlenmiştir.

Katot, ısıtıldığında elektron salan tungsten materyalinden yapılmış bir flamadan ve bu flamaya gerekli akımı sağlayacak negatif odaklayıcı bir kaptan oluşmuştur. Katot kabının görevi flamadan çıkacak elektronları, anoda doğru yönelterek hedefte belirtilen alan ve odak noktaya çarpmalarını sağlamaktır. Odak noktasının büyüklüğü flamanın büyüklüğüne bağlıdır. Flamanın tungstenden seçilmesinin nedeni, yüksek erime noktasına sahip olmasıdır.

Anot ise kalın bir çubuktur ve bu çubuğun sonunda küçük bir tungsten bir hedef bulunur. Hedefin tungsten seçilmesinde temel kriterler; yüksek atom numarasına ve yüksek erime noktasına sahip olmasıdır. Çünkü X- ışını oluşumu olasılığı atom numarasına bağlıdır. Bununla birlikte erime sıcaklığının yüksek bir değer (3370 derece) olması elektronlarla bombardıman edildiğinde oluşacak sıcaklıktan daha az etkilenmesi bakımından da iyi bir seçimdir. Elektronların hedefe çarpması sonucunda anot ısınır, ısının etkin bir şekilde tekrar normale döndürülmesi için çeşitli anot dizaynları vardır.

Anot ve katot arasına yüksek gerilim uygulandığında katottaki flamadan elektron yayınlanır. Bu elektronlar yüksek gerilim altında anota doğru hızlandırılır ve hedefe çarpmadan önce yüksek hızlara ulaşır. X- ışını bu hızlı elektronların hedefe çarptığında tungstenin çekirdeğinin itme kuvvetinden dolayı ani şekilde yön değiştirmesi ya da ivmelenmesinden dolayı oluşur.

X- Işınlarını özellikleri:

1) X- ışınları elektromanyetik dalgalardır.
2) Gözle görülmezler.
3) Işık hızında yayılırlar.
4) Yüksüz olduklarından elektrik ve manyetik alanlarda sapmazlar.
5) İyonlaşma yaparlar.
6) Fotoğraf filmlerini etkilerler

X – ışını oluşumunda iki ayrı olay arastlanır.

1)Bremstrahlung (frenleme) X- ışını

Bremstrahlung işlemi yüksek hızlı elektronlarla atom çekirdeği arasındaki çarpışmada ya da etkileşme sonucunda ortaya çıkar. Yüksek hızlı elektron hedef çekirdeğinin yanından geçerken, coulomb itme kuvvetinin etkisiyle yolundan sapabilir ve enerji kaybeder. Kaybedilen bu enerji boşluğa elektromanyetik alan tarafından yayılır. De Broglie dalga modeline göre elektron kendini eşlik eden elektromanyetik dalga ile çekirdeğin çevresinden geçer ve aniden saçılarak farklı bir yönde ivmelenir. Bu olaylar sonucunda enerjisinin bir kısmını ya da tamamını kaybeder ve bu enerji elektromanyetik radyasyon olarak boşluğa yayılır. Elektron tungsten hedef içinde bir veya birden fazla bremstrahlung etkileşmesine uğrayıp, enerjisini kısmen ya da tamamen yitirir. Dolayısıyla bremstrahlung fotonunun yayılma yönü hedefe düşen elektronların, yönüne bağlıdır. Bu etkileşme sonucu oluşan X- ışınları spektrumu süreklidir.

2) Karakteristik X ışınları

Elektronlar hedefe çarptıklarında ayrıca karakteristik X ışınlarıda oluştururlar.
Elektronlar hedefteki atomun yörünge elektronlarıyla etkileşip bu elektronları atomdan ayırarak atomun iyonlaşmasına neden olurlar. Çarpan elektron, atomu Eo – E enerjisi ile terk eder E enerjisini yörüngeden elektron koparmak için harcar. Bu arada kopan elektronun yerinde bir elektron boşluğu oluşur. Daha yukarıdaki yörüngelerden bir elektron, daha kararlı hale gelmek için alt yörüngedeki boşluğa geçer. Bu geçiş sırasında enerjisiyle orantılı olarak bir ışıma yapar.

X- Işını Spektrumu

X- ışını makinalarında üretilen X fotonlarının enerjisi homojen değildir.X- ışını
spektrumu bremstrahlung X-ışınlarının oluşturduğu sürekli enerji spektrumlarıyla bunun üstüne binmiş karakteristik X- ışınlarının oluşturduğu kesikli enerji spektrumunun toplamıdır.

Filitrasyon işlemi yapılarak spektrum düşük enerjili bileşenleri emilerek, tek dalgaboylu enerjili fotonlarda oluşan daha homojen bir X-ışını demeti elde edilir.

RADYOBİYOLOJİ

İyonlayıcı radyasyonlar, parçacıklardan veya fotonlardan oluşan bir elektromanyetik dalga yayılımıdır ve enerji seviyeli (frekansları) birbirinden farklıdır. İçinden geçtikleri maddelerde iyon çiftleri oluşturma özellikleri vardır ve bu iyon çiftleri (bilhassa su molekülünün hidroksil OH köklerine ayrışması) moleküler seviyede canlı dokular için tahrip edici özellikleri vardır. Hücre içi metabolizma bozuklukları ve hücre zarı bir takım tahribatlar yanında en önemli etki, hücrenin canlılığını ve bölünerek çoğalması kontrollü bir şekilde temin eden hücre çekirdeğinde, yani kromozomlarda meydana gelir.

İyonlayıcı radyasyonlar bu etkileri ile tıp ve biyolojide önemli uygulama alanları bulmuşlardır. Radyoterapi ve nükleer tıpta kanser tedavisi için kullanılan bu iyonlayıcı radyasyonlarda seçici olarak tümör hücreleri tahrip edilirken, sağlam dokuların zarar görmesi mümkün olduğu kadar azaltılmalıdır.

İyonize radyasyonun canlı üzerine etkisi(Biyolojik etkiler zinciri) 4 kademede gelişir:
1)Fiziksel Kademe(ışınlama): İyonlaşma ve uyarılmalar olur. (10-16 sn de)
2)Fiziko-Kimyasal Kademe: Kimyasal bozukluklar gelişir radikaller oluşur. (10-6 sn de)
3)Kimyasal Kademe: Biyo-moleküler bozuklıklar gelişir. Saniye ve saatler sonra belirginleşir.
4)Biyolojik Kademe: Hücre ve doku ölümleri oluşur. Saatler ve yıllar sonra belirginleşir.

Bu kademeler iyonize radyasyonun indirekt etki yolunu gösterir. Direkt etki yolu ise iyonize radyasyonun moleküllerden kopması ve kırılmalar göstermesidir. Örn: DNA kopması direkt etkidir.

İyonize radyasyon ile kanser hücre ölümünde biz en çok indirekt etkiden yararlanırız. Bu oran %80-90 dır. CA hücrelerin ölümü az bir kısmı radyasyonun direkt etkisi ile olur. İyonize radyasyonun etkisi özellikle mitozda, mitoza hazırlık safhasında çok fazladır.1 mm3 de 108–109 kanser hücresi vardır.

Tıpta kanser tedavisinde kullanılan iyonlayıcı radyasyonlar 50-400 keV ile 1.25-25 MeV seviyeleri arasındadır ve 2 yöntemle elde edilir.

1) Yapay ya da doğal radyoaktif maddelerin atom çekirdek bozunması sayesinde elde edilen elektronlar, alfa, beta ışınları ve en önemlisi Co-60 ve Cs-137 gibi radyoaktif elementlerden elde edilen  ışınları.

2) Nötron, proton, ağır iyonlar ve yaygın olarak kullanılan elektron hızlandırıcıları ile elde edilen yüksek enerjili parçacık ışınları ve en önemlisi hızlandırılan elektronların, tungsten gibi atom ağırlığı yüksek plakalara çarptırılması ile elde edilen yüksek enerjili X-ışınları.

FİZİKSEL ETKİLEŞİM

Yüklü parçacıklar (elektron, proton, ağır iyonlar) hızla ortam içinde geçerken, yakınından geçtikleri elektronlarla etkileşime girer ve iyonizasyon – eksitasyon (iyonlaşma-uyarma) meydana getirirler.Nötron yüksüz bir partiküldür, foton ise (,X ışını) yüksüz olduğu gibi parçacık içermeyen bir elektromanyetik dalgalardır. Ancak bunlarda geçtikleri ortamda aynı fiziksel olaylara(iyonlaşmaya) neden olurlar.Ortamöda ilerlerken fotonlar elektronlarla, nötronlar protonlarla etkileşerek onları harekete geçirirler, bu yükü parçacıkların birbirini itmesi, zıt yüklü parçacıkların birbirini çekmesi sonucunda iyon çiftleri meydana gelir.

1)Elektron Madde Etkileşimi

Primer veya sekonder elektronlar hızla içinden geçtikleri kinetik enerjilerini şu şekilde aktarırlar.

• Elektron çarpışması sonucu maddeye enerji transferi gerçekleşir.(Bu olay ikinci olaya nazaran hakim olan olaydır ve ortamda meydana gelen değişikliklerden büyük oranda sorumludur)
• Elektron çekirdek yanından geçerken frenleme sonucu X-ışınları meydana gelmesi

2)Ağır Parçacık-Madde Etkileşimi

Proton, ağır iyon gibi kütlesi nispeten büyük olan parçacıklar elektron gibi elektrik yük taşırlar.Yüksüz olan nötronlar ise ortamda ilerlerken çekirdek ile çarpışarak proton ve elektron serbestleştirirler.(özellikle hidrojen içeren su atomlarında) Bu sekonder protonlar ve elektronlar biyolojik etkilerden sorumludur.

3) Foton- Madde Etkileşimi

Gelen foton ortamdaki elektronlarla etkileşime girer.Bu etkiler, elektromanyetik dalga ile elektron etrafındaki elektrik alan içinde, ancak çok kısa mesafelerde meydana gelen şu fizik kuvvetleridir.

• Compton Olayı: Yüksek enerjili tedavide hakim olan olaydır.Gelen foton, enerjisinin bir kısmını ortamdan koparttığı bir elektrona (compton elektronu) verir ve enerjisi azalmış ve yönü değişmiş olarak yoluna devam eder. Gelen fotonun enerjisi ne kadar yüksekse, compton olayının kinetik enerjisi de o kadar yüksek olur.

• Fotoelektrik Olay : Compton olayından sonra ikinci önemli ve hakim olan olaydır.Gelen foton tüm enerjisini iç yörüngelerden koparttığı bir elektrona aktarır.(Fotoelektron). Elektronu kopan atom içinde elektron yörüngelerinde enerji seviyelerinde meydana gelen yeni düzenleme ile düşük enerjili yeni bir foton ve/veya bir elektron yayımı oluşur.

Radyoterapide meydana gelen daha az önemli diğer 3 olay şunlardır;
• Gelen fotonun yön değiştirmesi
• Çift oluşumu: Düşük enerji seviyesindeki (1.02MeV) bir foton atom çekirdeği yanındaki yoğun elektrik alanında enerjisini tüketir ve bu enerjinin maddeye dönüşmesi zıt yüklü ve 0.51 MeV enerjili iki elektronun oluşması şeklinde olur. (Negatron, Pozitron) Ancak bu parçacıklar hemen karşı parçacıklar ile birleşerek yok olur ve enerjileri, birbirine zıt yönde ilerleyen iki foton doğmasına neden olur.Yok olma (anhilasyon) fotonları adını alan bu fotonların enerji seviyeleri de 0.51 MeV’ dir.

• Çekirdek Radyasyonu: Çok yüksek enerjili X-ışınlarının çekirdeğe isabet etmesi durumunda tüm enerjisi çekirdeğe aktarılır ve çekirdekten bir nötron fırlatılmasına ve kalan çekirdeğin genellikle radyoaktif olan bir izotopa dönüşmesine neden olur.(Yapay izotoplar)

RADYASYON ÖLÇÜM BİRİMLERİ

İyonlaştırıcı radyasyonlarla yapılan çalışmalarda sonuca ulaşabilmek ve oluşacak zararlı biyolojik etkileri belirleyebilmek için radyasyon miktarının bilinmesi gereklidir. Bu amaçla radyasyon ölçecek bir takım birimlerin tanımlanması gereksinimi vardır.
Radyasyonun ölçülmesinde ilk zamanlarda tanımlanan birimler senslerle birlikte büyük değişikliklere uğramış hatta bunlardan bir kısmı (örneğin PASTİL birimi) tamamen terk edilerek yerlerine yeni birimler getirilmiştir. Daha sonra Uluslararası Radyasyon .Bilimleri Komitesi (ICRU) kullanılan birimleri yeniden inceleyerek aktivite, ışınlama, absorblanmış(soğrulmuş) doz ve doz eşdeğeri için özel birimler tanımlamıştır. Bunlar sırasıyla Curie(Ci), Röntgen®, Rad ve Rem’dir. Halen kullanılmakta olan bu birimler bugün yavaş yavaş uygulamadan kalkmaktadır. Buna neden, Uluslararası Ölçüler ve Ağırlıklar Bürosu (BIPM) ile Uluslararası Ölçüler ve Ağırlıklar Komitesi (CIPM)’ nin bütün dünyada kullanılan birimlerin aynın olması gereğini vurgulayarak MKS sistemini esas alan “Uluslararası Birimler Sistemi’’ ni (İnternatıonal Sistem of Unıt-SI) 1970’li kabul ve ilan etmesidir. Bu kabule göre SI birimlerinin yanı sıra eşdeğeri özel radyasyon birimlerinin belirlenmesinden sonra ise tek başına yazılmaları kararı alınmıştır.
Sağlık Fiziği’nde kullanılan birimler aşağıda açıklanmıştır. Bunlar:

Aktivite Birimi(A) : Birim zamanda(t) kendiliğinden oluşan çekirdek çözünmesidir. A=N/t
Özel birim : Curie(Ci)
SI birimi : Becquerel(Bq)

Curie : Bir saniyede 3,7*1010 parçalanma veren radyoaktif madde miktarının aktivitesidir.
Bequerel : Bir saniyade bir parçalanma veren radyoaktif madde miktarıdır.
1 Ci = 3,7*1010 Bq
1 Bq = 2,7*10-11 Ci

Işınlama (Exposure) Birimi (X) : Fotonlar tarafından havada oluşturulaniyonizasyon miktarıdır. Yani havanın birim kütlesi başına fotonlar tarafından açığa çıkarılan bütün elektronlar havada tamamen durdurulduğunda havada oluşan aynı işaretli iyonların toplam yükün mutlak değeridir. X=dQ/dm
Özel birim : Röntgen
SI Birimi :Coulomb/kg Özel bir ad konmamış. (C/kg)

Röntgen : Normal hava şartlarında (00 derecede 760 mmHg basıncında) havanın 1 kg ‘ında 2,58*10-4 Coulomb’luk elektirik yükü değerinde +ve – iyonlar oluşturan foton radyasyonu miktarıdır.
C /Kg : Normal hava şartlarında havanın 1kg’ında 1 Coulomb’luk elektrik yükü değerinde + ve – iyonlar oluşturan foton radyasyonu miktarıdır.
1R = 2,58*10-4 C/Kg
1 C/Kg = 3876 R
Işınlama Doz Şiddeti(X/t) : Birim zamanda ortaya çıkan ışınlama dozudur.Birimi (R/s) dir. Radyasyon korunmasında bu birim saniye yerine saat (h) olarak gösterilmektedir.

Absorblanmış Doz(D) : Birim kütleye verilen enerji miktarıdır. D=dE/dm
Özel birim: rad(radiation absorbed dose)
SI birimi: Gray(Gy)

Röntgen fotonlar için tanımlandığından başka radyasyonlar için kullanılamaz. Halbuki fotonlardan başka alfa, beta, nötron, proton vs gibi parçacık radyasyonlarda geçtikleri ortama , ortamın özelliğine bağlı olarak enerji verirler.Bu nedenle radyasyon cinsinden , enerjisinden ve soğurucu ortamın özelliğinden bağımsız yeni bir birime gerek duyulmuştur. (1953 yılında)

rad : ışınlanan maddenin 1kg’ına ,001Joule’lük enerji veren radyasyon miktarıdır.
Gray: ışınlana maddenin 1kg’ına 1 Joule’lük enerji veren radyasyon miktarıdır.

1Gy= 1 J/kg=100 rad

Eşdeğer Doz(H): Absorblanmış doz ile boyutsuz olan radyasyon ağırlık faktörünün çarpımıdır.
H=D*WR WR=Radyasyon ağırlık faktörü
Özel birim: rem (röntgen *****alent man)
SI birimi : Sievert(Sv)

Farklı radyasyonların insan dokusundaki hasarları farklı olacağından , güvenlik standartlarının temel dozimetrik değeri olan soğrulan doz , radyasyon korunması amaçları için tam tatmin edici olmamaktadır. Bu nedenle; dokudaki soğrulan dozun , sağlık etkisine yol açan radyasyonun türüne bağlı olarak saptanmış olan radyasyon ağırlık faktörü ile çarpılması gerekmektedir.
1Sv= 1 J/kg= 100 rem​

GAZLAR

01. Gazların Özellikleri:

Gazlar moleküller arası çekim kuvvetleri en az olan maddelerdir. Gaz molekülleri birbirinden bağımsız hareket ederler. Aralarındaki çekim kuvveti ancak ve sadece London çekim kuvvetidir. Büyük basınç ve düşük sıcaklıklarda sıvılaştırılabilirler. Gaz molekülleri bulundukları yeri her tarafına eşit oranda yayılarak doldururlar. Sonsuz oranda genişleyebilirler. Basınç altında yüksek oranda sıkıştırılabilirler. Yüksek basınçtan alçak basınca doğru çabucak akarlar. Sıcaklık ile basınç doğru orantılıdır. Düşük yoğunlukları vardır.
Gazların fiziksel davranışlarını dört özellik belirler. Bunlar; Basınç (P), sıcaklık (T) ve hacim (V) gazların durumunu değiştirebilen etkenlerdir. Gazlar genellikle kokusuz ve renksizdirler. Bazılarının kokusu, rengi ve zehirliliği en belirgin özelliğidir. Br2 kahverengimsi kırmızı, I2 mor renkli, NO2 ve N2O3 kahve renkli, F2 ve C12 yeşilimsi sarı, NH3 keskin kokulu, oksijen, azot ve asal gazlar dışındakiler zehirlidirler.

Basınç: Basınç, bir yüzeye uygulanan kuvvetin, o yüzeyin alanına bölünmesiyle bulunur.

P(Pa) = F(N)/ A(m2)

Atmosfer basıncı barometre ile ölçülür. Bir barometredeki civa yüksekliğine barometre basıncı denir. Atmosfer koşulları ve yükseklikle değişir. Standart atmosfer (atm), civa civa yoğunluğu 13,5951 g/cm3 (0 oC ) ve yerçekimi ivmesi g = 9,80665 ms-2 olduğu durumda, 760 mm yükseklikteki bir civa sütununun oluşturduğu basınç olarak tanımlanabilir.

1 atm = 760 mm Hg
1 atm= 760 torr
1 atm = 101,325 N/ m2
1 atm = 101,325 Pa
1 atm = 1,01325 bar

02. Basit Gaz Yasaları

Boyle Yasası: Sabit sıcaklıkta, sabit miktardaki gazın hacmi, basıncı ile ters orantılıdır.
P a 1/V yada PV = a (a sabit )
Orantı işareti (a) yerine eşitlik ve orantı sabitini koyarsak, sabit bir sıcaklık ve miktardaki gazın basınç ve hacim çarpımı bir sabite eşittir. Bu sabit değerde gazın miktarı ve sıcaklığına bağlıdır.
Örnek : 30 litre bir gazın, basıncı 6 atmosferden 3 atmosfere düşürüldüğünde hacmi ne olur?
Çözüm: Gazın sadece bir P1, V1 hali belli olması PxV sabitini bulmaya yeterlidir.
P1 = 6 atm, V1 = 30 L
P1.V1 = P2V2
6 (atm) x 30 (L) = 3 atm x V2
V2 = 180 L atm / 3 (atm)
V2 = 60 L bulunur.

Charles Yasası: Sabit basınçtaki, gazın hacmi sıcaklıkla doğru orantılıdır.

V a T veya V = bT (b Sabit) T (K) = t (oC) + 273,15

Örnek:. 25°C de 50 cm3 gaz 0°C ye soğutulursa hacmi ne olur?
Çözüm: Sıcaklık mutlaka mutlak sıcaklık cinsine çevrilmelidir:

bağıntısı kullanılarak ve V1 = 50 cm3, T1 = 25°C + 273 = 298 K, T2 = 0°C + 273 K alınarak

50/293 =V2 (cm3) / 273 V2 = 46,6 cm3 elde edilir.
Normal (ideal ) Basınç ve sıcaklık : Gazların özellik olarak sıcaklık ve basınca bağlı olması nedeniyle, normal sıcaklık ve basınç kavramları kullanılır. Gazlar için normal sıcaklık 0oC =273.15 K ve normal basınç 1 atm =760 mmHg dır.
Avagadro Yasası: Sabit sıcaklık ve basınçta, bir gazın hacmi miktarı ile doğru orantılıdır.
Bu kuram iki farklı şekilde ifade edilir.
1. Aynı basınç ve sıcaklıkta, farklı gazların eşit hacimleri aynı sayıda molekül içerir.
2. Aynı basınç ve sıcaklıkta, farklı gazların aynı sayıdaki molekülleri eşit hacim kaplar.
V a n veya V = c.n
Normal koşullarda bir gazın 22.414 L’si 6,02×1023 molekül ya da 1 mol gaz bulunur.
1mol gaz = 22.4 L gaz (normal koşullarda)
Birleşen Hacimler Yasası: Sıcaklık ve basıncın sabit olduğu tepkimelerde gazlar tamsayılarla ifade edilen basit hacim oranlarıyla birleşirler.

2 CO (g) + O2 (g) 2CO2 (g)

2L CO (g) + 1L O2 (g) 2 L CO2 (g)

03. İdeal Gaz denklemi

Basit gaz yasalarından yararlanarak, hacim, basınç, sıcaklık ve gaz miktarı gibi dört gaz değişkenini içeren tek bir denklemde birleştirilerek ideal gaz denklemi elde edilir.

1. Boyle yasası, Basıncın etkisini tanımlar, P a 1/V
2. Charles yasası, Sıcaklık etkisini tanımlar, V a T
3. Avagadro Yasası, gaz miktarının etkisini tanımlar, V a n

Bu gaz yasalarına göre, bir gazın hacmi, miktar ve sıcaklık ile doğru orantılı, basınç ile ters orantılıdır. Yani V a nT/P ve V= RnT/P

Pv = nRT
İdeal gaz denklemine uyan bir gaza idael veya mükemmel gaz ismi verilir.
İdeal gaz denkleminde gaz sabitinin değeri ideal şartlardaki birimlerden yararlanarak bulunur.

R = PV/ nT = 1 atm x 22,4140 L / 1 mol x 273,15K = 0,082057 L atm/mol K = 0,082057 L atm mol-1 K-1 elde edilir.

SI sistemine göre

R = PV/ nT = 101,325 Pa x 2,24140.10-2 m3 / 1 mol x 273,15K = 8.3145 m3 Pa mol –1 K-1
R = 8,3145 J mol-1 K-1

Örnek: 800 ml bir kapta 275 oC de 0.2 mol O2 nin oluşturduğu basınç ne kadardır ?

PV = nRT

P x 0,800 L = 0,2 x 0,082 L atm mol-1 K-1 x (273 + 275) K

P = 11,2 atm
Genel Gaz Denklemi:

Bazı durumlarda gazlar iki farklı koşulda tanımlanır. Bu durumda ideal gaz denklemi, başlangıç ve son durum olmak üzere iki kere uygulanır.

PiVi = ni R Ti R = PiVi / ni Ti

PsVs = ns R Ts R = PsVs / ns Ts

PiVi / ni Ti = PsVs / ns Ts bağıntısına genel gaz denklemi denir.

Mol kütlesi tayini :

Bir gazın sabit sıcaklık ve basınçta kapladığı hacim bilinirse, gaz miktarı (n), mol cinsinden, ideal gaz denklemiyle bulunur. Gazın mol sayısı, gaz kütlesinin (m) molekül ağırlığına (M) bölümüne eşit olduğundan, gaz kütlesi bilinirse n = m / M den yararlanarak mol kütlesi bulunabilir.

PV = mRT/M

Gaz Yoğunlukları:

Bir gazın yoğunluğu bulunurken d = m/V yoğunluk denkleminden yaralanılır. İdeal gaz denkleminde n/V yerine P/RT konulur.

d = m/V = MP/ RT

Sıvı ve katı yoğunlukları arasında belirli farklar vardır.

a. Bir gazın yoğunluğu mol kütlesi ile doğru orantılıdır. Katı ve sıvıların ise yoğunlukları ve mol kütleleri arasında kayda değer bir ilişki yoktur.
b. Gaz yoğunlukları basınç ve sıcaklığa bağlıdır. Basınç ile doğru orantılı, sıcaklık ile ters orantılıdır. Katı ve sıvıların yoğunlukları ile mol
kütleleri arasında kayda değer bir bir ilişki olmakla beraber, basınca çok az bağlıdır.

04. Gaz Karışımları:

Bir gaz karışımında gazlardan her birinin kendi yaptığı basınca kısmi basınç ismi verilir. Dalton’un kısmi basınçlar yasasına göre bir gaz karışımının toplam basıncı karışımın bileşenlerinin kısmi basınçlarının topl—– eşittir.

PT = PA + PB

nA/nT = PA / PT = VA / VT = XA

Burada nA / nT terimine A’ nın mol kesri XA ile gösterilir.

Örnek: Bir su buharı-neon gaz karışımının toplam basıncı 0.593 atm dir Su buharının o sıcaklıktaki kısmi basıncı suyun o sıcaklıktaki buhar basıncına eşittir ve 29.3 Torr dur. Neonun kısmi basıncını bulunuz.

Çözüm: P toplam = 0.593 atm = 0.593 atm x 760 Torr / atm = 450,68 Torr
Psu buharı = 29.3 Torr
Ptoplam = P su buharı + P neon
450,68 Torr = 29.3 Torr + Pneon
Pneon = 450,68 – 29.3 = 421,38 Torr
Pneon = 421,38 Torr / 760 Torr.atm-1 = 0.55 atm

05. Kinetik- Molekül Kuramı:

Gaz moleküllerinin aralarında çok büyük boşluklar bulunması onların büyük oranda sıkıştırılabilmesini sağlar. Sıvılarda ve katılarda moleküller birbirine çok sıkışık durumdadırlar. Büyük basınçlarda bile çok az bir hacim değişmesi gözlenebilir, pratikçe sıkıştırılamazlar. moleküllerinin yere düşmeden havada asılı kalmaları onların birbirleri ile devamlı çarpışma halinde olmaları ile açıklanır. Gaz moleküllerin devamlı hareket halinde olmaları gazların kinetik teorisi ile açıklanır. Gazların kinetik teorisi aşağıdaki bilgileri ortaya koyar.

1. Gaz molekülleri arasındaki boşluklar o kadar büyüktür ki bu büyük boşluklar yanında gaz moleküllerinin hacimleri ihmal edilecek kadar küçük boyuttadır.

2. Gaz molekülleri neden havada asılı kalıyor yere düşmüyor sorusuna da bir cevap olarak gaz molekülleri devamlı hareket halinde ve birbirleri ile çarpışmaktadırlar. Bir gazın bir molekülü 25°C de l atmosferde bir saniyede yaklaşık 10 9 çarpışma yapar. Gaz moleküllerinin çeperlere çarpması ise gaz basıncını oluşturur.

3. Gaz molekülleri hareketli olduğundan dolayı sahip oldukları kinetik enerjileri sıcaklıkla orantılıdır. Bir cismin hızı arttıkça kinetik enerjisi de artar.Moleküllerin hızları farklı olmasından dolayı ortalama hız alınır. Sabit sıcaklıkta tüm farklı gaz moleküllerinin eşit kinetik enerjiye sahip olacağı düşünülürse yüksek molekül ağırlıklı bir gaz molekülünün, düşük molekül ağırlıklı gaz molekülüne göre daha düşük hızlı olacağı bulunur.

4. Gaz moleküllerinin kabın duvarları veya birbirleri ile çarpışmaları mükemmel elastiktir. Çarpışan moleküller arasında enerji alışverişi olabilir. Fakat çarpışan moleküllerin toplam enerjisi öncekinin aynısıdır.

06. Graham’ın Gazların Yayılma Kanunu:

Yayılma (difüzyon), rastgele molekül hareketi sonucu moleküllerin göç etmesidir. İki yada daha fazla gazın yayılması, moleküllerin karışıp bulunduğu yerde homojen bir karşım oluşturması ile sonuçlanır. Dışa yayılma (efüzyon) gaz moleküllerinin bulundukları kaptaki bir delikten dışa doğru kaçmasıdır. İki değişik gazın dışa yayılma hızları mol kütlelerinin kare kökü ile ters orantılıdır.

A nın dışa yayılma hızı /B nin dışa yayılma hızı = (ums)A / ( ums)B = ((3RT/MA) / (3RT/MB))1/2 = (MB/MA) 1/2

Graham yasası ancak bazı koşullarda uygulanabilir. Dışa yayılma için gerekli gaz basıncı moleküllerin bağımsız olarak kaçışına olanak sağlayacak şekilde yani fışkırmayacak biçimde çok küçük olmalıdır. Delikler moleküller geçerken çarpışma olamayacak şekilde küçük olmalıdır.

Örnek: Bir delikten yayılan gaz miktarlarının karşılaştırılması. 2.2 x 10-4 mol N2(g) küçük bie delikten 105 saniye dışa yayılmaktadır. Aynı delikten 105 saniyede ne kadar H2(g) dışa yayılır?

H2 molekülleri N2 den daha az kütleye sahiptir. Gazlar aynı sıcaklıkta karşılaştırıldığında H2 molekülleri daha büyük hıza sahiptir.

x mol H2 / 2.2×10-4 mol N2 = (MN2 /MH2) 1/2 = ( 28.014 / 2.016) 1/2 =3.728

x mol H2 = 3.728 x 2.2×10-4 = 8.2 x 10-4 mol H2

Örnek: Dışa yayılma zamanlarının mol kütleler ile ilişkisi. Küçük bir delikten bir Kr(g) örneği 87.3 s de kaçar ve aynı koşullarda bilinmeyen bir gaz için bu süre 42.9 s dir. Bilinmeyen gazın mol kütlesi nedir?

bilinmeyen dışa yayılma zamanı / Kr nin dışa yayılma zamanı = 42.9 s / 87.3 s = (Mx / MKr ) 1/2 = 0.491

Mx = ( 0.491)2 x MKr = (0.491)2 x 83.80 = 20.2 g/mol

07. Gerçek ( İdeal olmayan) Gazlar

İdeal gaz bağıntısı tanıtılırken gerçek gazlarında uygun koşullarda ideal gaz yasasına uyduğu belirtilmişti. Bir gazın ideal gaz koşulundan ne kadar saptığının ölçüsü sıkıştırılabilirlik faktörü olarak belirlenir. Bir gazın sıkıştırılabilirlik faktörü PV/nRT oranıdır. İdeal gaz bağıntısından (PV = nRT ) bir ideal gaz için bu oranın PV / nRT =1 olduğunu biliyoruz. Gerçek bir gaz için deneysel olarak belirlenen PV /nRT oranının 1’e yakınlığı gazın ne kadar ideal davrandığının ölçüsüdür. Bütün gazlar yeterince düşük basınçlarda ( 1atm den düşük) ideal davranırlar. Fakat artan basınçlarda saparlar. Çok yüksek basınçlarda ise sıkıştırılabilirlik faktörü daima 1 den büyüktür.

* Gerçek gazlar yüksek sıcaklık ve düşük basınçlarda idealliğe yaklaşırlar.

* Gerçek gazlar düşük sıcaklık ve yüksek basınçlarda ideallikten uzaklaşırlar.

Van der Waals denklemi

Gerçek gazlar için bir kaç denklem çıkarılmıştır. Bunlar ideal gaz denkleminden çok daha geniş bir sıcaklık ve basınç aralığında kullanılabilirler.

( P + n2a/V2) ( V-nb) = nRT

Örnek: 1.00 mol Cl2 (g) 273 K de 2.00 L lik bir hazcim kaplıyor. Basıncı van der Waals denklemini kullanarak hesaplayınız. a= 6.49 L2 atm mol-2 ve b= 0.0562 L mol -1

P = nRT/ ( V-nb) – n2a/V2

n = 1.00 mol V = 2.00 L T = 273K R =0.08206 L atm mol-1 K-1

n2 a = ( 1.00)2 mol 2 x 6.49 L2atm/mol2 = 6.49 L2 atm

nb = 1.00 mol x 0.0562 L mol -1 = 0.0562 L

P = 1.00 mol x 0.08206 L atm mol -1 K -1 x 273 K /( 2.00 -0.0562)L – 6.49 L2 atm / (2.00)2 L2

P = 11.5 atm – 1.62 atm = 9.9 atm

Maddenin Gaz Hali :

Sıvı içerisinde bulunan gaz kabarcıkları sıvı yüzeyine yaklaştıkça hacimleri büyür, neden?
Sıvı içerisinde bulunan gaz kabarcıkları yüzeye yaklaştıkça hacimleri büyür. Çünkü sıvının tabanında gaza yapılan basınç yüzeye yaklaştıkça azalır bundan dolayı gazın haçmi büyür.
Arabaların fren sisteminde neden gaz yerine sıvı kullanılır ?

Arabalarda gaz yerine sıvı kullanılmasının nedeni gazların sıkışabilirliğidir. Sıvıların sıkıştırılma özelliği olmadığı için fren tertibatında kullanılmaktadır. Sıvılara sıkıştırılmak üzere bir etki yapıldığında bunu aynen bulunduğu sistemin çeperlerine iletir. Arabalarda bu özellik kullanılarak fren tertibatındaki balataların sıkıştırılması sağlanır.

Yüksek tansiyonun sebebi nedir ? Yüksek tansiyonu olan bir kişinin nasıl bir yerde yaşaması gerekir ?
Yüksek tansiyonun sebebi insan vucudundaki kan basıncının dış basınca göre daha yüksek olmasından dolayıdır.Dış basınc ile kan basıncının eşit olmaması halinde rahatsızlıklar meydana gelir. Kan basıncı yüksek olan kişiler hava basıncının yüksek olduğu yerlerde yaşamak zorundalar. Buralar da deniz kenerlarıdır.
Ellerinizi sıvı azotla (73 Kelvin derece veya -196C0 ) hiç zarar görmeden yıkamanız mümkünmüdür ?

Kızgın bir tavaya bir damla su damlatırsanız,su damlasının tavada hızla gezinerek çok uzun süre kaldığını görürüz.Sıvı azotun kaynama noktası (1atm.basınçta) teninizin ısısından 230C0 daha azdır. Derinin”aşırı”sıcaklığı sıvıyı hızla kaynatır ve deriyle soğuk sıvı arasında bir gaz tabakası oluşur.Gaz tabakası deriyi soğuk sıvıdan yalıtır.Tava ne kadar sıcaksa,su damlaları o kadar uzun süre kalır.Yüksek ısı daha iyi bir gaz tabakası oluşturur ve ısının damlaya iletilmesini yavaşlatır.Kızgın tavada su damlalarının hızla hareketinin sebebi de altlarında oluşan su buharından kaynaklanır.
Süt bir karışımdır. Sütün taşmasına sebep nedir? Ayrıca taşmasını önlemek için neler yapılabilir?

Çoğunluğu sudan oluşan sütün içinde ayrıca biraz yağ, protein, laktoz ve bazı mineraller vardır. Sütün içerisindeki yağ, küçük kürecikler şeklinde bulunur. Bu yağ küreçikleri yukarı doğru yükselirler ve erime noktalarına yakın bir değer de (yaklaşık 50 o C ) sıcak süt üzerinde bir tabaka oluştururlar. Isınan sütün içerisinde oluşan su buharı kabarcıklarının yüzeye ulaşmaları bu katman tarafından engellenir; kabarcıklar kabuğun altın da toplanırlar. Sayıları artan ve birleşen bu kabarcıklar, bir an gelir kabuğu ittirebilecek kadar yüksek bir basınca sahip olurlar. Bu durumda da süt taşmış olur. Sütü karıştırmak kabuğun oluşmasını engellemiyeceğinden basınç oluşmaz. Dolayısı ile süt taşmaz.

Maddenin Gaz Hali :

Moleküllerin birbirleri üzerine çekim uygulamadıkları düşünülen ve kabul edilen gaza ideal gaz denir. İdeal gaz kavr—– uyan gazlar pek azdır.(H2, He gibi). Gerçek gazlar ideal gaz kavr******* az yada çok saparlar. Gazlar yüksek sıcaklık ve düşük basınçta ideal davranırlar.

Barometre :

Açık hava basıncını ölçen aletlerdir. Deniz seviyesinde 76 cm Hg sütununun yüksekliğine yada yaptığı basınca 1 atmosfer denir.
h yüksekliği kullanılan sıvının cinsine ve atmosfer basıncına bağlıdır. Borunun çapına bağlı değildir. Civa yerine ( d=13,6 gr/cm3) su kullanılsaydı (d=1gr/cm3) okunacak değer,
h1.d1=h2.d2

76.13,6 = 1.h2 den h2= 1033 cm yani 10,33 metre olurdu. Bu kadar yüksek bir değerle uğraşmak yerine civa ile daha küçük bir değerle hesap yapmak daha kolaydır. Suyun buharlaşma özelliği bulunduğundan borunun üzerindeki boşluğu doldurarak basıncın yanlış okunmasına sebep olabilir fakat civa metaldir ve kolay buharlaşmaz.

Manometre :

Kapalı kaplardaki gazların basıncını ölçen aletlerdir. İki çeşittir.

1- Açık uçlu Manometreler :Bu tür manometrelerde sistem atmosfer basıncına açıktır.

a) Gazın basıncı atmosfer basıncından Büyükse : Civa açık kolda yükselir ve gazın basıncı atmosfer basıncıyla h yüksekliğinin topl—– eşittir.

b) Gazın basıncı atmosfer basıncından küçükse :Civa gaza doğru yükselir. Gazın basıncı, Atmosfer basıncından h yüksekliği çıkarılarak bulunur.

c) Gazın basıncı atmosfer basıncına eşitse civa seviyeleri eşit olur.

2-Kapalı uçlu Manometreler: Bu tür manometrelerde sistem atmosfer basıncına kapalıdır. Civa seviyeleri arasındaki fark gazın basıncına eşittir.
P ile V ilişkisi: gazların sabit mol sayıda ve sabit sıcaklıkta basınçlarıyla hacimleri ters orantılıdır.

P1V1=P2V2 P1/T1=P2/T2 V1/T1=V2/T2 P1/n1=P2/n2 V1/n1=V2/n2

Sıcaklık : Bir maddenin ortalama kinetik enerjisidir. Gaz hesaplamalarında kesinlikle oC ile hesaplama yada yorum yapılmaz. Verilen CC 0K cinsinden sıcaklığa çevrilmelidir.
T= t 0C + 273

Farklı iki gazın sıcaklıkları eşitse ortalama kinetik enerjileri de eşittir. Kinetik enerji sadece sıcaklığa bağlıdır.

Gazların yayılma hızları molekül ağırlıklarının kareköküyle ters orantılıdır. (Graham Difüzyon Kanunu)
Yayılma hızı sıcaklığa ve molekül ağırlığına bağlıdır. İki niceliğin eşit olduğu şartlarda moleküllerin
hızları da eşittir. Örneğin sıcaklıkları eşit olan CO2 (44) ve N2O ( 44) gazlarının ortalama hızları birbirine eşittir.

Gazların Özkütlesi :

1. N.Ş.A da Özkütle : Normal şartlar altında bir gazın özkütlesi molekül ağırlığının 22,4 e bölünmesiyle bulunur.

d= MA/22,4

2. Herhangi bir şarttaki özkütle:

İdeal gaz denklemi: PV=nRT (paran varsa ne rahatsın)

(P=atm, V=litre R=22,4/273=0,082 T= kelvin cinsinden sıcaklık)
PV=m/MA.R.T ve m=d.V dir. m yerine yazılırsa, PV=(d.V/MA).R.T

P.MA=dRT

Gazların Kısmi Basıncı :

Karışım halinde bulunan gazların her birinin tek başına yaptığı basınca kısmi basınç denir. Gazların kısmi basınçları toplamı her zaman toplam basınca eşittir.

Pt=P1 + P2 + P3 +……………Pn

Pgaz= Ptoplam . (ngaz/ntoplam)
Gazların kısmi basınçları eşitse mol sayıları da eşittir.
Mol sayısı büyük olan gazın kısmi basıncı da büyüktür.

Birleşik Kaplarda Son Basıncı Bulma:
Birleşik kaplarda musluklar açıldıktan sonraki basıncı hesaplamak için,

P1V1 + P2V2 + P3V3 + PnVn = PsonVson bağıntısı kullanılır.

Gazların Kullanım Alanlarına Örnekler

Metan Gaz aletleri test gazı, motor testleri, reaktör soğutucu, yakıt

Karbonmonoksit Katalizör geri kazanımı ve indirgeyici atmosfer oluşturmak
Propan İtici gaz, yakıt, sınai soğutucu, termostat dolumları

Bütan Yakıt, itici gaz, organik kimya sanayi
Neon Lambalar, elektron tüpleri, plazma işleri, kriyojenik soğutma
Sülfürhekzaflorür Elektrik sanayi, cam izolasyon, kaçak kontrolu

Ksenon Aydınlatma, kalibrasyon gazı olara

FİZİKSEL VE KİMYASAL DEĞİŞMELER :

Günlük hayatımızda çeşitli etkiler sonucunda maddelerde bazı değişimler olduğunu görürüz. Örneğin bir kağıdı yaktığımızda kağıdın kül olduğunu, bir buz parçasını sıcak bir yere koyduğumuzda buzun eridiğini, annemizin çeşitli sebzeleri pişirerek yemek yaptığını hepimiz görmüşüzdür.
Maddelerde meydana gelen değişimler 2 grupta incelenebilir:
• Fiziksel değişmeler
• Kimyasal değişmeler

FİZİKSEL DEĞİŞMELER :

Maddenin yapısı değişmeden sadece dış görünüşünde meydana gelen değişmelerdir. Fiziksel değişmeler sonucunda yeni maddeler oluşmaz. Sadece maddenin renk, şekil, büyüklük gibi özellikleri değişir. Fiziksel değişmeler sonucunda maddenin kimliği değişmez.

ÖRNEKLER :

• Buzun erimesi
• Kağıdın yırtılması
• Tebeşirin toz haline getirilmesi
• Küp şekerin ezilerek toz şeker haline getirilmesi
• Suyun donması
• Çaydanlıktaki suyun buharlaşması
• Camın buğulanması
• Akşamları gökyüzünün renginin maviden kızıla dönüşmesi
• Altından bilezik yapılması
• Odunun kırılması
• Camın kırılması
• Yemek tuzunun suda çözünmesi
• Yoğurttan ayran yapılması
• Bakırdan tencere yapılması
• Havucun rendelenmesi

KİMYASAL DEĞİŞMELER :

Maddenin iç yapısında meydana gelen değişmelerdir. Kimyasal değişmeler sonucunda maddenin kimliği değişir ve yeni maddeler oluşur. Kimyasal değişmeye uğrayan maddeler eski haline döndürülemez.

ÖRNEKLER :

• Kömürün yanması
• Sütten yoğurt ve peynir yapılması
• Demirin paslanması
• Meyvelerin çürümesi
• Un ve sudan hamur yapılması
• Kumdan cam yapılması
• Ekmeğin küflenmesi
• Kabartma tozunun üzerine limon sıkılması
• Canlıların ölmesi
• İnsanın sindirim ve solunum yapması
• Bitkilerin fotosentez yapması
• Üzüm suyundan sirke yapılması
• Doğalgazın yanması
• Dişlerimizin çürümesi
• Yumurtanın haşlanması
• Gümüşün açık havada zamanla kararması

NOT : Kimyasal değişmeler sonucunda hem maddenin görünümü değişir hem de yeni maddeler oluşur.

HAL DEĞİŞİM OLAYLARI

Bir maddenin dışarıdan ısı (enerji) alarak veya dışarıya ısı (enerji) vererek bir halden başka bir hale geçmesine; “hal değiştirme” denir.

Devamını Oku

Madde ve Özellikleri – Lise 1 Kimya (9.Sınıf) Konuları

Madde ve Özellikleri  – Lise 1 Kimya (9.Sınıf) Konuları
0

BEĞENDİM

ABONE OL

MADDE ve ÖZELLİKLERİ

MADDE

Kütlesi, hacmi ve eylemsizliği olan herşey maddedir. Buna göre kütle hacim ve eylemsizlik maddenin ortak özelliklerindendir.
Çevremizde gördüğümüz, hava, su, toprak v.s gibi herşey maddedir.
Maddeler tabiatta katı, sıvı, gaz olmak üzere üç halde bulunurlar.

Element

Tek cins dan oluşmuş saf maddeye element denir.
Mağnezyum (Mg), Hidrojen (H2) gibi.

Elementler

Homojendirler (Özellikleri heryerde aynıdır.)
Belirli erime ve kaynama noktaları vardır.
Yapı taşı dur.
Kimyasal ve fiziksel yollarla daha basit parçaya ayrılamazlar.

Bileşik

Birden fazla elementin belirli oranlarda kimyasal yollarla bir araya gelerek, kendi özelliklerini kaybedip oluşturdukları yeni özellikteki saf maddeye bileşik denir.
Örneğin; İki hidrojen (H) uyla, bir oksijen (O) u birleşerek hidrojen ve oksijenden tamamen farklı olan su (H2O) bileşiğini oluşturur.

Bileşikler

Homojendirler.
Belirli erime ve kaynama noktaları vardır.
Yalnızca kimyasal yollarla bileşenlerine ayrılabilir. Fiziksel yollarla bileşenlerine ayrılamazlar.
Yapı taşı moleküldür.
Bileşiği oluşturan elementler sabit kütle oranı ile birleşirler. Bu oran değişirse başka bir bileşik oluşur.
Kimyasal özellikleri kendisini oluşturan elementlerin özelliğine benzemez.
Formüllerle gösterilirler.
Molekülünde en az iki cins vardır.

KARIŞIM

Birden fazla maddenin her türlü oranda (rastgele oranlarla) bir araya gelerek, kimyasal özelliklerini kaybetmeden oluşturdukları maddeye karışım denir. Karışımda maddeler fiziksel özelliklerini kaybedebilirler.

Karışımlar

a. Homojen karışım: Özellikleri her yerde aynı olan karışımlara denir. (Çözeltiler, alaşımlar, gaz karışımları v.s.)

b. Heterojen Karışım: Özellikleri her yerde aynı olmayan karışımlara denir.

c.Süspansiyon: Katı + Sıvı heterojen karışımlarının özel adıdır. Bir katının sıvı içinde çözünmeden asılı kalmasına denir.
Tebeşir tozu + Su karışımı gibi.

d.Emülsiyon: Sıvı + Sıvı heterojen karışımlarının özel adıdır.
Zeytin yağı + Su karışımı gibi.

Karışımların Özellikleri

Karışımlarda maddeler kendi özelliklerini korurlar.

Karışımlar fiziksel yollarla bileşenlerine ayrılabilirler.

Erime ve kaynama noktaları sabit değildir.

Homojen ya da heterojen olabilirler.

Yapısında en az iki cins vardır.

Saf değildirler.

Formülleri yoktur.

Maddeler belirli oranlarda birleşmezler.

Fiziksel Değişme

Maddenin dış görünüşü ile ilgili olan özelliklere fiziksel özellikler denir.

Yoğunluk, sertlik, renk, koku, tad …… gibi.

Maddenin dış görünüşündeki değişiklikler fiziksel olaydır. Şekerin suda çözünmesi, kağıdın yırtılması, buzun erimesi……. gibi.

Kimyasal Değişme

Maddenin iç yapısı ile ilgili olan özelliklere kimyasal özellikler denir. Yanıcı olup olmaması, asidik ya da bazik özellik ….. gibi.
Maddelerin ve moleküllerinde meydana gelen değişiklikler kimyasal olaydır. Kağıdın yanması, hidrojen ve oksijenin birleşerek su oluşturması, demirin paslanması …… gibi.

Maddelerin ayırdedici özellikleri

Aynı şartlarda miktara bağlı olmayan yalnızca o maddeye ait olan özelliklere ayırt edici özellikler denir.

a. Özkütle (yoğunluk)

b. Erime noktası

c. Kaynama noktası

d. Çözünürlük

e. Esneklik

f. İletkenlik

g. Genleşme

Özkütle

Maddelerin 1 cm3 ündeki madde miktarının gram cinsinden değeridir.

Erime ve kaynama noktası

Katı fazdaki maddenin sıvı faza geçtiği sıcaklık erime noktası, sıvı fazdaki maddenin kaynamaya başladığı sıcaklık kaynama noktasıdır. Erime ve kaynama sırasında sıcaklık sabit kalır. Sıcaklığın sabit kaldığı zamanlarda potansiyel enerji artarken diğer zamanlarda kinetik enerji artar.

Çözünürlük

Belirli bir sıcaklıkta 100 gram çözücüde çözünebilen maksimum madde miktarıdır.
Çözünürlük ; çözücü ve çözünenin cinsine, sıcaklığa, basınca bağlı olarak değişir.

Esneklik

Katı maddelerin yapısı ile ilgili bir özelliktir. Madde üzerine bir kuvvet uygulandığında şeklin değiştiği kuvvet ortadan kaldırıldığında eski haline geldiği durum esnekliktir. Yalnız katılar için ayırt edici özelliktir.

Genleşme

Isıtılan cismin hacminde, yüzeyinde veya boyundaki değişmedir. Genleşme katı ve sıvılar için ayırt edici özelliktir. Her katı ve sıvı maddenin ayrı bir genleşme katsayısı vardır. Ancak bütün gazların genleşme katsayısı aynıdır.

Elektrik İletkenliği

Metaller elektrik akımını iletir, ametaller iletmez. Çözelti bazındaki maddelerde ise yapısında iyon bulunduranlar elektrik akımını iletir.
Maddelerin bu ayırd edici özellikleri aynı şartlarda farklı maddelerin birbirinden ayırt edilmesinde yararlanılan özelliklerdir.

• MADDELERİN AYRILMASI

a. Elektriklenme İle Ayrılma

Cam, ebonit ve plastik çubuklar yünlü giyeceklere veya saçımıza sürtüldüklerinde elektrik yükü kazanırlar.
Kağıt parçacığı, karabiber gibi hafif bazı tanecikler de yüklü bu çubuklar tarafından çekilirler.
Yüklü cisimden etkilenen madde ile etkilenmeyen madde bir arada bulunursa bu özelliklerinin farklılığından yararlanılarak karışım bileşenlerine ayrıştırılır.

b. Mıknatıs İle Ayırma

Mıknatıs demir, kobalt ve nikel metallerini ve bu metallerden yapılmış olan teneke, toplu iğne gibi cisimleri çeker. Mıknatıs tarafından çekilen maddelere ferromanyetik maddeler denir.

c. Öz Kütle Farkı İle Ayırma

Yoğunlukları farklı olan iki maddeden oluşan karışım, öz kütle farkından yararlanılarak ayrıştırılır.
Katı – katı karışımlarını ayrıştırmak için rüzgâr ya da bir sıvıdan yararlanılır. Kullanılan sıvının yoğunluğunun katılardan birisininkinden büyük diğerininkinden küçük olması gerekir.

Dikkat edilecek başka bir nokta ise iki katının da bu sıvıda çözünmemesi ve kimyasal değişikliğe uğramaması gerekir.
Su ve zeytinyağı birbiri içerisinde çözünmez. Bu iki madde karıştırıldığında öz kütlesi küçük olan sıvı diğer sıvının üzerinde toplanır. Oluşan karışım bir huni yardımıyla ayrıştırılır. Ayrıştırma işleminde öz kütle farkından yararlanılmış olur.
Su ile zeytinyağı karıştırıldığında öz kütlesi büyük olan sıvı altta toplanır. Musluk açıldığında su başka bir kaba alınır.

d. Eleme Yöntemi İle Ayırma

Tanecik büyüklükleri farklı olan katı katı karışımları elenerek birbirinden ayrıştırılabilir.

e. Süzme İle Ayırma

Kumlu su süzgeç kağıdından geçirilirse su süzülürken, kum süzekte kalır. İşte böyle heterojen katı – sıvı karışımları süzülerek birbirinden ayrıştırılabilir.
Haşlanmış olan makarna kevgir ile süzülerek suyundan ayrıştırılır.
Çamurlu su, bulanık baraj suları bu medod ile ayrıştırılır.

f. Çözünürlük Farkı İle Ayırma

Katı içeren sıvı karışım süzülür. Sıvı alta geçerken katı kısım süzekte kalır ve karışım ayrıştırılmış olur.
Tuz ile kumun karışmış olduğunu düşünelim. Karışım su içerisine atılırsa tuz çözünürken kum çözünmez. Oluşan yeni karışım süzelerek kum ile tuzlu su ayrıştırılır. Suda çözünmüş olan tuz ise buharlaştırma ile yeniden elde edilir.
Yemek tuzu ve talaş, yemek tuzu – kum karışımları çözünürlük farkından yararlanılarak su yardımı ile birbirinden ayrıştırılmış olur.

g. Hâl Değiştirme Sıcaklıkları Farkı İle Ayırma

Katı – katı karışımları erime noktası farkından yararlanılarak ayrıştırılır.
Karıştırılan maddeler sıvı olabilir. Karışımdaki bir sıvı buharlaştırılıp tekrar yoğunlaştırma ile diğerlerinden ayrıştırılabilir. Bu yönteme ayrımsal damıtma denir.
Gazların ve ham petrolün ayrıştırılması da ayrımsal damıtma ile yapılmaktadır.
Gaz karışımı soğutulur. Kaynama noktası en yüksek olan gaz yoğunlaşmaya başlar ve gaz kısmından ayrılmış olur.

h. Gaz Karışımlarını Çözünürlük Farkı İle Ayırma

Gazlar kimyasal özelik olarak değişik değişiktir. Bu özellikten yararlanılırak gaz karışımları ayrıştırılabilir. Belli bir çözücüde çözünürlükleri farklı olan gaz karışımı bu çözücü içerisine gönderilirse gazlardan biri çözünür diğeri çözünmez. Karışım da böylece ayrıştırılmış olur.

• BİLEŞİKLERİN AYRIŞMASI

Karışımların ayrıştırılmasında ayırt edici özelliklerden yararlanılır. Fiziksel yöntemlerle elementler ve bileşikler ayrıştırılamaz.

a. Isı Enerjisi İle Ayrışma

Bazı bileşikler ısıtıldıklarında kendisini oluşturan element ya da bileşiklere parçalanır.
KClO3(katı) ® KCl(katı) + O2(gaz)
CaCO3(katı) ® CaO(katı) + CO2(gaz)

b. Elektrik Enerjisi İle Ayrışma (Elektroliz)

Bazı bileşikler elektrik enerjisi ile kendisini oluşturan elementlere ayrıştırılabilir. Bu olaya elektroliz denir. Su (H2O) elektroliz edildiğinde H2 ve O2 gazlarını dönüşür.
2H2O(s) ® 2H2(g) + O2(g)

c. Başka Ayrıştırma Teknikleri

Bazı bileşikleri elementel hale getirmek için elektroliz yapmaya gerek yoktur. Bileşikte bulunan element ile reaksiyon verebilecek madde, bileşik ile reaksiyona sokulur.
FeO + C ® Fe + CO

a. Elektriklenme İle Ayrılma

Cam, ebonit ve plastik çubuklar yünlü giyeceklere veya saçımıza sürtüldüklerinde elektrik yükü kazanırlar.
Kağıt parçacığı, karabiber gibi hafif bazı tanecikler de yüklü bu çubuklar tarafından çekilirler.
Yüklü cisimden etkilenen madde ile etkilenmeyen madde bir arada bulunursa bu özelliklerinin farklılığından yararlanılarak karışım bileşenlerine ayrıştırılır.

b. Mıknatıs İle Ayırma

Mıknatıs demir, kobalt ve nikel metallerini ve bu metallerden yapılmış olan teneke, toplu iğne gibi cisimleri çeker. Mıknatıs tarafından çekilen maddelere ferromanyetik maddeler denir.

c. Öz Kütle Farkı İle Ayırma

öz kütle farkından yararlanılmış olur.
Su ile zeytinyağı karıştırıldığında öz kütlesi büyük olan sıvı altta toplanır. Musluk açıldığında su baYoğunlukları farklı olan iki maddeden oluşan karışım, öz kütle farkından yararlanılarak ayrıştırılır.
Katı – katı karışımlarını ayrıştırmak için rüzgâr ya da bir sıvıdan yararlanılır. Kullanılan sıvının yoğunluğunun katılardan birisininkinden büyük diğerininkinden küçük olması gerekir.
Dikkat edilecek başka bir nokta ise iki katının da bu sıvıda çözünmemesi ve kimyasal değişikliğe uğramaması gerekir.
Su ve zeytinyağı birbiri içerisinde çözünmez. Bu iki madde karıştırıldığında öz kütlesi küçük olan sıvı diğer sıvının üzerinde toplanır. Oluşan karışım bir huni yardımıyla ayrıştırılır. Ayrıştırma işleminde şka bir kaba alınır.

d. Eleme Yöntemi İle Ayırma

Tanecik büyüklükleri farklı olan katı katı karışımları elenerek birbirinden ayrıştırılabilir.

e. Süzme İle Ayırma

Kumlu su süzgeç kağıdından geçirilirse su süzülürken, kum süzekte kalır. İşte böyle heterojen katı – sıvı karışımları süzülerek birbirinden ayrıştırılabilir.
Haşlanmış olan makarna kevgir ile süzülerek suyundan ayrıştırılır.
Çamurlu su, bulanık baraj suları bu medod ile ayrıştırılır.

f. Çözünürlük Farkı İle Ayırma

Katı içeren sıvı karışım süzülür. Sıvı alta geçerken katı kısım süzekte kalır ve karışım ayrıştırılmış olur.
Tuz ile kumun karışmış olduğunu düşünelim. Karışım su içerisine atılırsa tuz çözünürken kum çözünmez. Oluşan yeni karışım süzelerek kum ile tuzlu su ayrıştırılır. Suda çözünmüş olan tuz ise buharlaştırma ile yeniden elde edilir.
Yemek tuzu ve talaş, yemek tuzu – kum karışımları çözünürlük farkından yararlanılarak su yardımı ile birbirinden ayrıştırılmış olur.

g. Hâl Değiştirme Sıcaklıkları Farkı İle Ayırma

Katı – katı karışımları erime noktası farkından yararlanılarak ayrıştırılır.
Karıştırılan maddeler sıvı olabilir. Karışımdaki bir sıvı buharlaştırılıp tekrar yoğunlaştırma ile diğerlerinden ayrıştırılabilir. Bu yönteme ayrımsal damıtma denir.
Gazların ve ham petrolün ayrıştırılması da ayrımsal damıtma ile yapılmaktadır.
Gaz karışımı soğutulur. Kaynama noktası en yüksek olan gaz yoğunlaşmaya başlar ve gaz kısmından ayrılmış olur.

h. Gaz Karışımlarını Çözünürlük Farkı İle Ayırma

Gazlar kimyasal özelik olarak değişik değişiktir. Bu özellikten yararlanılırak gaz karışımları ayrıştırılabilir. Belli bir çözücüde çözünürlükleri farklı olan gaz karışımı bu çözücü içerisine gönderilirse gazlardan biri çözünür diğeri çözünmez. Karışım da böylece ayrıştırılmış olur.

• BİLEŞİKLERİN AYRIŞMASI

Karışımların ayrıştırılmasında ayırt edici özelliklerden yararlanılır. Fiziksel yöntemlerle elementler ve bileşikler ayrıştırılamaz.

a. Isı Enerjisi İle Ayrışma

Bazı bileşikler ısıtıldıklarında kendisini oluşturan element ya da bileşiklere parçalanır.
KClO3(katı) ® KCl(katı) + O2(gaz)
CaCO3(katı) ® CaO(katı) + CO2(gaz)

b. Elektrik Enerjisi İle Ayrışma (Elektroliz)

Bazı bileşikler elektrik enerjisi ile kendisini oluşturan elementlere ayrıştırılabilir. Bu olaya elektroliz denir. Su (H2O) elektroliz edildiğinde H2 ve O2 gazlarını dönüşür.
2H2O(s) ® 2H2(g) + O2(g)

c. Başka Ayrıştırma Teknikleri

Bazı bileşikleri elementel hale getirmek için elektroliz yapmaya gerek yoktur. Bileşikte bulunan element ile reaksiyon verebilecek madde, bileşik ile reaksiyona sokulur.
FeO + C ® Fe + CO

Maddenin Ayrılması

Maddeler fiziksel hallerine göre;katı, sıvı ve gaz olarak sınıflandırılacağı gibi,saf maddeler ve karışımlar olarak da sınıflandırılabilir.

Madde

1.Saf Madde

1.1.Elementler
1.2.Bileşikler

2.Karışımlar

2.1.Homojen Karışımlar
2.2.Heterojen Karışımlar

Çözeltiler:

Katı çözeltiler (alaşımlaririnç,tunç vb.)
Sıvı çözeltiler (etil alkol-su)
Gaz çözeltiler (hava)

Süspansiyon: (kireçli su)
Emülsiyon: (zeytinyağı,su karışımı) Aerosol: (sis)

Karışımların Ayrılması:

1.Elektriklenme ile ayırma
2.Mıknatıs ile ayırma
3.Özkütle farkı ile ayırma
4.Süzme ile ayırma
5.Çözünürlük farkı ile ayırma
6.Hal değiştirme sıcaklıkları farkı ile ayırma

Bileşiklerin Ayrışması:

1.Isı enerjisi ile ayrışma
2.Elektrik enerjisi ile ayrışma (Elektroliz)
3.Başka ayrıştırma teknikleri

Karışımların Özellikleri

1.Karışımı oluşturan maddeler her oranda karışır.
2.Karışımı oluşturan maddeler kendi özelliklerini kaybetmez.
3.Karışımın erime noktası,kaynama noktası gibi özellikleri,karışımı oluşturan maddelerin karışıma oranına göre değişir.
4.Karışımlar fiziksel yollarla bileşenlerine ayrılabilir.
5.Formülle gösterilemez.
6.Oluşmalarında ve bileşenlerine ayrılmalarında bileşiklere göre daha az enerji değişimi olur.

Bileşiklerin Özellikleri

1.Bileşiği oluşturan maddeler belirli oranda birleşir.
2.Bileşiğin özellikleri kendisini oluşturan saf maddelerin özelliklerine benzemez.
3.Bileşikler sadece kimyasal yöntemlerle ayrışabilir.
4.Bileşiklerin erime ve kaynama noktaları sabittir.
5.Belirli bir formülleri vardır.
6.Bileşiklerin oluşması ya da ayrışmasında karışımlara göre önemli miktarda enerji değişimi olur​

ATOM ve YAPISI

Elementin özelliğini taşıyan en küçük parçasına denir.

Atom Numarası
Bir elementin unda bulunan proton sayısıdır. Protonlar (+) yüklü olduklarından pozitif yük sayısı ya da çekirdek yükü şeklinde ifade edilebilir.

Atom numarası = Proton sayısı = Çekirdek yükü

Kütle Numarası = Proton sayısı + Nötron sayısı

eşitliği yazılabilir.
Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

İYON

(+) veya (–) yüklü ya da gruplarına iyon denir.
elektron verirse (+) yüklü iyon oluşur ve katyon olarak isimlendirilir.
elektron alırsa (–) yüklü iyon oluşur ve anyon olarak isimlendirilir.
Bir X atomu için; gösterilir.
Buradan nötron sayısı, elektron sayısı bulunabilir.

İZOTOP
numaraları aynı kütle numaraları farklı olan atomlara izotop atomlar denir.

birbirinin izotopudur.
İzotop atomların kimyasal özellikleri aynıdır. Fiziksel özellikleri farklıdır.
İzotop iyonların elektron sayıları farklı ise kimyasal özellikleri de farklıdır.
ALLOTROP

Kimyasal özellikleri aynı (aynı dan oluşmuş), fiziksel özellikleri (renk, kaynama noktası, erime noktası, uzaydaki dizilişleri v.s.) farklı olan maddelere allotrop maddeler denir.
Elmas, grafit, amorf karbon, üç madde de yapısında yalnızca karbon (C) u içerir. Fakat uzaydaki dizilişleri ve bağların sağlamlığı farklı olan maddelerdir.
O2 gazı ve O3 (Ozon) gazı birbirlerinin allotropudur. Allotrop için bilinmesi gereken en önemli özellik ise;
Allotrop maddeler bir başka madde ile reaksiyona girdiklerinde aynı cins ürünler oluşur.
2Ca + O2 ® 2CaO
3Ca + 2/3 O3 ® 2CaO gibi.

Modern Teorisi
Elektron dalga özelliği göstermektedir.
Atomdaki elektronun aynı anda yeri ve hızı bilinemez.
Elektronların bulunma ihtimalinin fazla olduğu küre katmanları vardır ve bu katmanlara orbital denir.

ELEKTRONLARIN DİZİLİŞİ

Pauli Prensibi
Elektronlar yörüngelere yerleştirilirken ;
2n2 formülüne uyarlar.
(n : yörünge sayısı, 1,2,3 ………. gibi tamsayılar)
Son yörüngede maksimum 8 elektron bulunur.
Buna göre, her yörüngedeki elektron sayısı :
1. yörünge : 2.12 = 2 elektron
2. yörünge : 2.22 = 8 elektron
3. yörünge : 2.32 = 18 elektron
4. yörünge : 2.42 = 32 elektron alır.

Elektronik konfigürasyon

Bir atomun elektronlarının hangi yörüngede olduğu ve orbitallerinin cinsinin belirtildiği yazma düzenine Elektronik konfigürasyon denir.

n : Baş kuant sayısı olup 1, 2, 3, … gibi tam sayılardır. Elektronun hangi yörüngede olduğunu belirtir.

l : Yan kuant sayısı olup, orbital adı olarak bilinir, s, p, d, f gibi harflerle anılır.
Elektronlar önce düşük potansiyel enerjili orbitallere yerleşirler. Dört değişik enerji düzeyi vardır.

s : Enerji seviyesi en düşük orbitaldir. 2 elektron alabilir.

p : s orbitalinden sonra elektronlar p orbitallerine yerleşir. px , py , pz olmak üzere 3 tanedir. p orbitalleri toplam 6 elektron alabilir.

d : 10 elektron alır ve toplam 5 tanedir. p orbitallerinden sonra elektronlar d orbitallerine yerleşirler.

f : f orbitalleri toplam 14 elektron alır ve 7 tanedir. Enerji düzeyi en yüksek olan orbitaldır.

Yörünge Sayısı (n)

Yörüngedeki orbital sayısı(n2)

Yörüngedeki elektron sayısı (2n2)

1……….
1 (1 tane s)
2
2. ………
4 (1 tane s, 3 tane p)
8
3. ………
9 (1 tane s, 3 tane p, 5 tane d)
18
4. ………

16 (1 tane s,3 tane p, 5 tane d,
7 tane f)

32

Bir atomun elektronları yörüngelere yerleştirilirken okların sırası takip edilir. Bunlar bu sıra ile yazılırsa aşağıdaki gibi olur.

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6

Peryot : Dizilişi yapılan elementin en son yazılan s orbitalinin başındaki sayıya periyot denir.

Grup : Son yörünge orbitalleri s ve p ile bitiyorsa A grubu, d ve f ile bitiyorsa B grubu elementidir.
A grupları son yörüngelerindeki s ve p orbitallerindeki elektronların toplamıyla bulunur.
X: 1s2 2s2 2p6 3s2 3p6 dizilişine göre atom 3. periyot, 8A grubundandır.

PERİYODİK TABLO
Elementlerin atom numaralarına göre belirli bir kurala uyarak sıralanması ile periyodik cetvel oluşur.
Periyodik cetvelde yatay sıralara periyot, düşey sıralara grup denir. Periyodik cetvelde 7 tane periyot, 8 tane A grubu, 8 tane B grubu vardır. 8B grubu 3 tanedir. Her periyot kendine ait olan s orbitali ile başlar p orbitali ile biter. Diger bir ifade ile 1A grubu ile başlayıp 8A grubu ile sona erer.
A grubu elementleri s ve p blokunda,
B grubu elementleri d ve f blokunda bulunurlar.
B grubu elementlerine geçiş elementleri denir. Bunların tamamı metaldir.
Periyodik cetvelde A grubu elementlerinin özel isimleri vardır.
Periyodik cetvelde aynı grupta bulunan elementlerin değerlik elektron sayıları aynı olduğundan benzer kimyasal özellik gösterirler.iafis–duslertakimi message-userBanner”>Bayan Üye

METAL-AMETAL ve SOYGAZ’IN ÖZELLİKLERİ

Metal
Ametal

Soygaz
Grup numarası 1A,2A, 3A, ve B gruplarında bulunan elementler metaldir.
Kendilerini soygaza benzetmek için son yörüngelerindeki elektoronları vererek
(+)değerlik alırlar.
1A(+1), 2A (+2)
Kesinlikle (-) değer almazlar.
Kendi aralarında bileşik oluşturmazlar.Ametallerle bileşik oluştururlar.
İndirgen özellik gösterirler.
Tel ve Levha haline gelebilirler.
Elektirik akımını iletirler.
Tabiatta genellikle katı halde bulunurlar .
Grup numarası 5A ,6A,7A, olanlar ametaldir.
Soygaza benzeme yani son yörüngelerindeki elektronları 8’e tamamlamak için elektron alarak(-) değerlik alılar.
5A(-3),6A,(-2)7A(-1)…

Fakat(+) değerlik alabilirler.
Kendi aralarında ve me-tallerle bileşik oluşturur-lar.
Yükseltgen özellik göste-rirler.
Tel ve levha haline gel-mezler.
Elektirik akımını iletmez-ler.
Tabiatta genelde gaz ve çift atomlu moleküller halinde bulunurlar. (F2,N2,02…)
Grup Numarası 8A olanlar soygazdır.
Kararlıdırlar,elektron alış-verişi yapmazlar.
Bileşik yapmazlar
Orbitalleri doludur.
Tabiatta tek atomlu gaz halinde bulunur-lar.
• BİLEŞİK OLUŞUMU

a. Metal + Ametal

b. Ametal + Ametal

Metaller son yörüngelerindeki elektronları vererek (+) değerlik alırlar.
Ametaller ise son yörüngedeki elektronları 8’e tamamlamak için elektron alarak (-) değerlikli olurlar.
Bileşik formülünü bulabilmek için öncelikle bileşiği oluşturacak elementlerin değerlikleri tespit edilir. Bu değerlikler en küçük katsayılar şeklinde çaprazlanır.
En genel ifadesi ile X+m ile Y-n iyonu XnYm
bileşiğini oluşturur.
Bileşiği oluşturan atomların her ikisi de ametal olduğunda farklı bileşik formülleri oluşabilir.

ATOM ve İYON ÇAPI (HACMİ)
Peryot numarası (yörünge sayısı) arttıkça atom hacmi büyür.
Grup numarası arttıkça atom hacmi küçülür. Çünkü yörünge sayısı aynı kalmakta fakat çekirdek yükü ve çekirdeğin elektronları çekme gücü artmaktadır.
Bir atom ya da iyon elektron aldıkça çapı büyür, elektron verdikçe çapı küçülür.
Örneğin; X atomunun hacmi X-n iyonunun hacminden küçük, X+n iyonunun hacminden büyüktür.

Örnek – 1
6C, 14Si, 3Li
atomlarının çaplarını karşılaştırınız?

Çözüm

Peryot numarası büyük olanın çapı en büyük olduğundan Si çapı en büyüktür.
6C, ile 3Li aynı peryotta olduğundan, grup numarası (proton sayısı) arttığı için
çekirdek çekimi büyük olanın çapı küçük olacağından 3Li çapı 6C nun çapından büyüktür. Sonuç olarak çaplar arasında Si > Li > C ilişkisi vardır.

İYONLAŞMA ENERJİSİ

Gaz halindeki bir atomdan bir elektron koparmak için verilmesi gereken enerjiye iyonlaşma enerjisi (1. iyonlaşma enerjisi) denir.
2’inci elektronu koparmak için verilen enerjiye 2. iyonlaşma enerjisi denir.
3’üncü elektronu koparmak için verilen enerjiye 3. iyonlaşma enerjisi denir.

Herhangi bir atom için daima 1.i.E <>
Periyot numarası arttıkça iyonlaşma enerjisi azalır.
Gruplarda iyonlaşma enerjisi sıralaması,
1A < 3A < 2A < 4A < 6A < 5A < 7A < 8A
şeklindedir.
Örnek – 2
Bir X atomu için;
X(g) ® X+2(g) + 2e–
X+1(g) ® X+2(g) + e–
X+1(g) ® X+3(g) + 2e–
DH = 340 k.kal.
DH = 215 k.kal.
DH = 625 k.kal.
Verildiğine göre X atomunun 1. iyonlaşma enerjisi, 2. iyonlaşma enerjisi ve
3. iyonlaşma enerjisi değerleri kaçtır?

Çözüm
1. denklem: 2 elektronu uzaklaştırmak için verilen enerjidir. Yani 1. ve 2. iyonlaşma enerjileri toplamıdır. 2 elektronu koparmak için toplam 340 k.kal enerji harcanmıştır.
215 kkal. 2’inci elektronu uzaklaştırmak için verilen enerji olduğuna göre 2. iyonlaşma enerjisi 215 k.kal’dir. O zaman 340 – 215 = 125 k.kal 1. iyonlaşma enerjisidir. 625 k.kal. X atomunun 1 elektronu uzaklaşmış durumundan 2e– daha uzaklaştırmak için gereken enerjidir. (Yani: 2. ve 3. iyonlaşma enerjileri toplamıdır.)
2. İ.E = 215 k.kal olduğuna göre;
3. iyonlaşma enerjisi = 625 – 215 = 410 k.kal dir.

ÇÖZELTİLER

ÇÖZELTİ

Fiziksel özellikleri her yerde aynı olan (homojen) karışımlara çözelti denir.

Bir çözeltiyi oluşturan her bir maddeye çözeltinin bileşenleri denir.

Örneğin; su içerisinde NaCl tuzu çözülmesiyle oluşan çözeltinin bileşenleri su ve tuzdur.

Genel olarak bir çözelti çözücü ve çözünenden oluşmaktadır.

Çözücü Çözünen Örnek

Sıvı Katı Su+Şeker
Gaz Gaz Su+CO2
Katı Katı Alaşımlar

Çözeltiler çözünmenin şekline göre ikiye ayrılır;

a. İyonlu çözeltiler

Çözünen madde iyonlarına ayrışarak çözünüyorsa bu çözeltilere iyonlu çözeltiler denir.

Asit, baz, tuz çözeltileri iyonlu çözeltilerdir. Bu çözeltiler hareketli iyon bulundurdukları için elektrik akımını iletirler.

b. Moleküllü çözeltiler

Çözünen madde moleküler olarak çözünüyorsa bu çözeltilere moleküler çözelti denir. Şekerin suda çözünmesi bu çözeltilere örnek olarak verilebilir. Bu çözeltiler elektrik akımını iletmezler.

Çözeltiler kendi aralarında üçe ayrılırlar;

a. Doygun çözelti

Çözebileceği maksimum maddeyi çözmüş olan çözeltiye denir.

b. Doymamış çözelti

Çözebileceği kadar maddeyi çözmemiş olan çözeltiye denir.

c. Aşırı doymuş çözelti

Bazı durumlarda çözeltinin derişikliği doygunluk sınırını aşabilir. Bu gibi çözeltilere aşırı doymuş çözeltiler denir. Bu çözeltiler oldukça kararsızdır. Küçük bir etki ile fazlalıklar çöker ve doygun bir çözelti elde edilir.

Çözeltiler çözünenin miktarına göre ikiye ayrılırlar;

a. Derişik çözelti

Belli bir miktar çözücüde, fazla miktarda çözünen içeren çözeltilere derişik çözelti denir.

b. Seyreltik çözelti

Belli bir miktar çözücüde, az miktarda çözünen içeren çözeltilere seyreltik çözelti denir.

ÇÖZÜNÜRLÜK

Belli bir sıcaklıkta 100 gram çözücüde gram olarak çözünebilen maksimum madde miktarına ÇÖZÜNÜRLÜK denir. Çözgen H2O olduğunda 100 gram yerine 100 ml değeri ile de karşılaşabilirsiniz.

Örneğin,25°C’de KNO3’ün çözünürlüğü,

(60 gram/100 ml su’dur). Yani 25°C’de 100 ml su en fazla 60 gram KNO3 çözebilir.

Çözünürlüğe Etki Eden Faktörler

Çözücü cinsi

Çözünenin cinsi

Sıcaklık

Basınç

Ortak iyon

ÇÖZÜCÜ VE ÇÖZÜNENİN CİNSİ

Genel manada polar maddeler polar çözücülerde, apolar maddeler apolar çözücülerde daha iyi çözünür.

Örneğin; NaCl tuzu suda çok iyi çözünürken, karbon tetra klorür (CCl4) sıvısında çözünmez.

I2 molekülleri ise suda çözünmezken, CCl4’te iyi çözünür.

SICAKLIK

Sıcaklık değişimi çözünürlüğü değiştirir. Katıların sıvı içerisindeki çözünürlüğü sıcaklık arttıkça genellikle artar. Gazların sıvıdaki çözünürlüğü ise sıcaklık arttıkça azalır.

BASINÇ

Katıların çözünürlüğü basınç ile değişmez. Gazların sıvıdaki çözünürlüğü ise basınç arttıkça artar.

ORTAK İYON

Herhangi bir katının ortak iyon bulunduran çözeltideki çözünürlüğü saf çözücüdeki çözünürlüğünden daima daha küçüktür.

DERİŞİM (KONSANTRASYON)

Bir çözeltide birim hacimdeki çözünmüş olan çözünen miktarına derişim (konsantrasyon) denir.

Belli başlı derişim birimleri; yüzde derişim, molar derişim (molarite), normal derişim (normalite) dir.

Yüzde Konsantrasyon

100 gram çözeltideki (çözücü + çözünen) çözünmüş olan madde miktarına yüzde konsantrasyon denir.

Örneğin; 80 gram su içerisinde 20 gram şeker çözülerek hazırlanan çözelti %20’lik bir çözeltidir.

MOLARİTE: (Molar Konsantrasyon)

1 lt. çözeltide çözünmüş olan maddenin mol miktarına molarite denir.

M : Molarite

n : Mol sayısı

V : Hacim (litre)

NORMALİTE (Normal Konsantrasyon)

1 lt’de çözünmüş eşdeğer gram sayısına denir.

Kısaca Normalite = Molarite x Tesir Değerliği N = Mx TD ile bulunur.

Tesir değerligi asit ya da bazın değerliğine tuzun ise + yük toplamına eşittir.

ÇÖZELTİLER ARASI REAKSİYONLAR

(Denklemli molarite problemleri)

İyon içeren iki çözelti karıştırıldığında bazen çökelme olmaz, bazende iyonlar suda az çözünen bir katı oluşturuyorsa bir çökelme olur. Yani iyonlar arasında bir tepkime gerçekleşir.

1A grubunun tuzları ve yapısında NO3- iyonu bulunduran tuzlar suda çok iyi çözünür. Diger tuzlar için bir genelleme yapmak mümkün degildir.

Örnegin : AgNO3 çözeltisi ile NaCl çözeltileri karıştırıldığında bir çökelme gözlenir. Burada iyonlar yeniden düzenlenerek AgCl ve NaNO3 bileşikleri oluştuğu düşünülebilir. NaNO3 suda çok iyi çözündüğüne göre çöken tuz AgCl’dir.

İyon Denklemi: Ag+(aq) + Cl-(aq) –> AgCl(k)

şeklinde olur.

Karıştırılan iki çözeltiden biri asit çözeltisi, diğeri baz çözeltisi ise mutlaka nötürleşme tepkimesi olacaktır.

Nötürleşme denklemi:

H+ + OH– ® H2O şeklindedir.

ÇÖZELTİLERİN ÖZELLİKLERİ

Çözeltinin kaynama noktası, saf maddenin kaynama noktasından yüksektir.

Çözeltinin donma noktası, saf maddenin donma noktasından düşüktür.

Çözeltinin buhar basıncı, saf maddenin buhar basıncından düşüktür.

Çözeltilerin yoğunlukları çözeltilerde çözünen madde miktarına göre değişir.

Bütün bu değişmeler (Katı + Sıvı) çözeltileri için düşünülebilir. Bu değişme miktarları iyon derişimine bağlıdır.

Aşağıda saf su ile tuzlu suyun ısıtılması sırasında zamanla sıcaklık değişim grafikleri verilmiştir.

rafiklere dikkat edilirse kaynama sırasında saf suyun sıcaklığı sabit kalırken, tuzlu suyun sıcaklığı devamlı artmıştır.

Alkol-su karışımının ısıtılması sırasında zamana bağlı sıcaklık değişim grafiği çizilseydi aşağıdaki gibi olurdu.

Grafige göre;

I bölgesinde alkol – su karışımı vardır. Zamanla karışımın sıcaklığı artmaktadır.

II bölgesinde 78 °C’de alkol kaynamaktadır. Verilen ısı alkolün buharlaşması için kullanılır. Sıcaklık alkolün tamamı tükeninceye kadar sabit kalır.

III bölgesinde yalnız su vardır. Suyun sıcaklığı zamanla artar.

IV bölgesinde su 100 °C’de buharlaşmaktadır. Su tükeninceye kadar sıcaklık sabit kalır.

-Saf maddelerin donma noktaları sabittir. Donma müddetince sıcaklık değişimi yoktur. Ancak çözeltilerin donma noktası çözünenin miktarına bağlı olarak değişir. Donma süresince sıcaklık düşer.​

KİMYASAL YASALAR

a)Sabit Oranlar Yasası (Proust)

X ve Y’den oluşan bir bileşiğin formülü XaYb ise,sabit oranı;

Mx =a.X ile hesaplanır.
M y b.Y

a ve b sayıları elementlerin bileşikteki atom (molatom) sayılarıdır.

Örneğin;

H2O için,(H=1, O=16)

MH = 2.1 –> MH = 1

MO 1.16 Mo 8

N2O3 için, (N=14, O=16)

Sabit oranlar yasası,bir bileşikteki elementlerin kütlece yüzdelerinin sabit olduğunu ifade eder.

SO3 için hesaplayalım.(S=32 O=16)

MS = 1.32

BİLEŞİK FORMÜLLERİ

Bileşikler formüllerle gösterilir.Bir bileşiğin formülü,o bileşiğin yapısını oluşturan elementlerin cinsini ve atomlarının moleküldeki sayılarını verir.Moleküller bileşiklerin üç tür formülü bulunmaktadır.
Basit (kaba) formül
Molekül formülü

Yapı formülü

BASİT FORMÜL

Molekül formülünün sadeleştirilmiş halidir.

Molekül formülü Basit formül
C2H6 à CH3
C3H6O3 à CH2O
N2O4 à NO3
C4H8 à CH2

Bileşiği oluşturan elementlerin mol sayıları bulunduktan sonra en küçük tam sayılarına çevrilir.Bu sayılar elementlerin sembollerinin sağ alt köşelerine yazılıp,semboller yan yana yazılınca basit formül yazılmış olur.

MOLEKÜL FORMÜLÜ

Bileşiğin bir molekülünü oluşturan atomların cinsini ve kesin sayılarını verir.
(Basit formül).n = Molekül formülü

Molekül formülü à n à Basit formül
CH2O 6 C6H12O6
CH2 5 C5H10
NO2 2 N2O4

YAPI FORMÜLÜ

Bileşiğin bir molekülünü oluşturan atomların arasındaki bağları gösteren formüldür.Bileşik hakkında en kapsamlı bilgiyi verir.
Örneğin;
C3H6 molekül formülüne sahip bileşiğin yapı formülü;

Molekül formülü C2H5OH olan etil alkolün yapı formülü;

KATLI ORANLAR YASASI(DALTON)
İki element aralarında birden fazla bileşik oluşturduğunda,bunlardan birinin sabit kütlesi ile birleşen diğer elementin değişen kütleleri arasında basit ve tam sayılarla ifade edilebilen bir oran vardır.Buna katlı oranlar yasası denir.
Örneğin;
Fe2O3 ve Fe3O4 bileşiklerinden eşit miktarda Fe ile birleşen oksijenin kütleleri arasındaki katlı oran;
Fe2O3.(3) ààà Fe6O9
Fe3O4.(4) ààà Fe6O8
İşlemleri sonucunda 9 olduğu belirlenir.Eşit miktarda oksijen ile birleşen demirin
8
kütleleri arasında katlı oran;
Fe2O3.(4) ààà Fe8O12
Fe3O4.(3) ààà Fe9O12
İşlemleri sonucunda 8 olduğu belirlenir.
9
iki bileşiğin katı oranlar yasasına uygun olması için;
+ aynı elementlerden oluşmaları,
+ basit formüllerinin farklı olması gerekir.
+ yalnızca 2 atomdan oluşmuş olmaları gerekir.

MADDELERİN AYRILMASI

a. Elektriklenme İle Ayrılma
Cam, ebonit ve plastik çubuklar yünlü giyeceklere veya saçımıza sürtüldüklerinde elektrik yükü kazanırlar.
Kağıt parçacığı, karabiber gibi hafif bazı tanecikler de yüklü bu çubuklar tarafından çekilirler.
Yüklü cisimden etkilenen madde ile etkilenmeyen madde bir arada bulunursa bu özelliklerinin farklılığından yararlanılarak karışım bileşenlerine ayrıştırılır.

b. Mıknatıs İle Ayırma
Mıknatıs demir, kobalt ve nikel metallerini ve bu metallerden yapılmış olan teneke, toplu iğne gibi cisimleri çeker. Mıknatıs tarafından çekilen maddelere ferromanyetik maddeler denir.

c. Öz Kütle Farkı İle Ayırma
Yoğunlukları farklı olan iki maddeden oluşan karışım, öz kütle farkından yararlanılarak ayrıştırılır.
Katı – katı karışımlarını ayrıştırmak için rüzgâr ya da bir sıvıdan yararlanılır. Kullanılan sıvının yoğunluğunun katılardan birisininkinden büyük diğerininkinden küçük olması gerekir.
Dikkat edilecek başka bir nokta ise iki katının da bu sıvıda çözünmemesi ve kimyasal değişikliğe uğramaması gerekir.
Su ve zeytinyağı birbiri içerisinde çözünmez. Bu iki madde karıştırıldığında öz kütlesi küçük olan sıvı diğer sıvının üzerinde toplanır. Oluşan karışım bir huni yardımıyla ayrıştırılır. Ayrıştırma işleminde öz kütle farkından yararlanılmış olur.
Su ile zeytinyağı karıştırıldığında öz kütlesi büyük olan sıvı altta toplanır. Musluk açıldığında su başka bir kaba alınır.

d. Eleme Yöntemi İle Ayırma
Tanecik büyüklükleri farklı olan katı katı karışımları elenerek birbirinden ayrıştırılabilir.

e. Süzme İle Ayırma
Kumlu su süzgeç kağıdından geçirilirse su süzülürken, kum süzekte kalır. İşte böyle heterojen katı – sıvı karışımları süzülerek birbirinden ayrıştırılabilir.
Haşlanmış olan makarna kevgir ile süzülerek suyundan ayrıştırılır.
Çamurlu su, bulanık baraj suları bu medod ile ayrıştırılır.

f. Çözünürlük Farkı İle Ayırma
Katı içeren sıvı karışım süzülür. Sıvı alta geçerken katı kısım süzekte kalır ve karışım ayrıştırılmış olur.
Tuz ile kumun karışmış olduğunu düşünelim. Karışım su içerisine atılırsa tuz çözünürken kum çözünmez. Oluşan yeni karışım süzelerek kum ile tuzlu su ayrıştırılır. Suda çözünmüş olan tuz ise buharlaştırma ile yeniden elde edilir.
Yemek tuzu ve talaş, yemek tuzu – kum karışımları çözünürlük farkından yararlanılarak su yardımı ile birbirinden ayrıştırılmış olur.

g. Hâl Değiştirme Sıcaklıkları Farkı İle Ayırma
Katı – katı karışımları erime noktası farkından yararlanılarak ayrıştırılır.
Karıştırılan maddeler sıvı olabilir. Karışımdaki bir sıvı buharlaştırılıp tekrar yoğunlaştırma ile diğerlerinden ayrıştırılabilir. Bu yönteme ayrımsal damıtma denir.
Gazların ve ham petrolün ayrıştırılması da ayrımsal damıtma ile yapılmaktadır.
Gaz karışımı soğutulur. Kaynama noktası en yüksek olan gaz yoğunlaşmaya başlar ve gaz kısmından ayrılmış olur.

h. Gaz Karışımlarını Çözünürlük Farkı İle Ayırma
Gazlar kimyasal özelik olarak değişik değişiktir. Bu özellikten yararlanılırak gaz karışımları ayrıştırılabilir. Belli bir çözücüde çözünürlükleri farklı olan gaz karışımı bu çözücü içerisine gönderilirse gazlardan biri çözünür diğeri çözünmez. Karışım da böylece ayrıştırılmış olur.

• BİLEŞİKLERİN AYRIŞMASI
Karışımların ayrıştırılmasında ayırt edici özelliklerden yararlanılır. Fiziksel yöntemlerle elementler ve bileşikler ayrıştırılamaz.

a. Isı Enerjisi İle Ayrışma
Bazı bileşikler ısıtıldıklarında kendisini oluşturan element ya da bileşiklere parçalanır.
KClO3(katı) ® KCl(katı) + O2(gaz)
CaCO3(katı) ® CaO(katı) + CO2(gaz)
b. Elektrik Enerjisi İle Ayrışma (Elektroliz)
Bazı bileşikler elektrik enerjisi ile kendisini oluşturan elementlere ayrıştırılabilir. Bu olaya elektroliz denir. Su (H2O) elektroliz edildiğinde H2 ve O2 gazlarını dönüşür.
2H2O(s) ® 2H2(g) + O2(g)
c. Başka Ayrıştırma Teknikleri
Bazı bileşikleri elementel hale getirmek için elektroliz yapmaya gerek yoktur. Bileşikte bulunan element ile reaksiyon verebilecek madde, bileşik ile reaksiyona sokulur.
FeO + C ® Fe + CO

Maddenin Ayrılması

Maddeler fiziksel hallerine göre;katı, sıvı ve gaz olarak sınıflandırılacağı gibi,saf maddeler ve karışımlar olarak da sınıflandırılabilir.

Madde

1.Saf Madde

1.1.Elementler

1.2.Bileşikler

2.Karışımlar

2.1.Homojen Karışımlar

2.2.Heterojen Karışımlar

Çözeltiler:

Katı çözeltiler (alaşımlaririnç,tunç vb.)

Sıvı çözeltiler (etil alkol-su)

Gaz çözeltiler (hava)

Süspansiyon: (kireçli su)

Emülsiyon: (zeytinyağı,su karışımı) Aerosol: (sis)

Karışımların Ayrılması:

1.Elektriklenme ile ayırma

2.Mıknatıs ile ayırma

3.Özkütle farkı ile ayırma

4.Süzme ile ayırma

5.Çözünürlük farkı ile ayırma

6.Hal değiştirme sıcaklıkları farkı ile ayırma

Bileşiklerin Ayrışması:

1.Isı enerjisi ile ayrışma

2.Elektrik enerjisi ile ayrışma (Elektroliz)

3.Başka ayrıştırma teknikleri

Karışımların Özellikleri

1.Karışımı oluşturan maddeler her oranda karışır.

2.Karışımı oluşturan maddeler kendi özelliklerini kaybetmez.

3.Karışımın erime noktası,kaynama noktası gibi özellikleri,karışımı oluşturan maddelerin karışıma oranına göre değişir.

4.Karışımlar fiziksel yollarla bileşenlerine ayrılabilir.

5.Formülle gösterilemez.

6.Oluşmalarında ve bileşenlerine ayrılmalarında bileşiklere göre daha az enerji değişimi olur.

Bileşiklerin Özellikleri

1.Bileşiği oluşturan maddeler belirli oranda birleşir.

2.Bileşiğin özellikleri kendisini oluşturan saf maddelerin özelliklerine benzemez.

3.Bileşikler sadece kimyasal yöntemlerle ayrışabilir.

4.Bileşiklerin erime ve kaynama noktaları sabittir.

5.Belirli bir formülleri vardır.

6.Bileşiklerin oluşması ya da ayrışmasında karışımlara göre önemli miktarda enerji değişimi olur

Atom Numarası
Bir elementin unda bulunan proton sayısıdır. Protonlar (+) yüklü olduklarından pozitif yük sayısı ya da çekirdek yükü şeklinde ifade edilebilir.
Atom numarası = Proton sayısı = Çekirdek yükü
Kütle Numarası = Proton sayısı + Nötron sayısı

eşitliği yazılabilir.
Nötr (yüksüz) bir için, çekirdekte kaç proton varsa çekirdeğin etrafındaki yörüngelerde de o kadar elektron dolaşır.

İYON
(+) veya (–) yüklü ya da gruplarına iyon denir.

elektron verirse (+) yüklü iyon oluşur ve katyon olarak isimlendirilir.
elektron alırsa (–) yüklü iyon oluşur ve anyon olarak isimlendirilir.
Bir X atomu için; gösterilir.
Buradan nötron sayısı, elektron sayısı bulunabilir.

İZOTOP
numaraları aynı kütle numaraları farklı olan atomlara izotop atomlar denir.
birbirinin izotopudur.
İzotop atomların kimyasal özellikleri aynıdır. Fiziksel özellikleri farklıdır.
İzotop iyonların elektron sayıları farklı ise kimyasal özellikleri de farklıdır.
ALLOTROP
Kimyasal özellikleri aynı (aynı dan oluşmuş), fiziksel özellikleri (renk, kaynama noktası, erime noktası, uzaydaki dizilişleri v.s.) farklı olan maddelere allotrop maddeler denir.
Elmas, grafit, amorf karbon, üç madde de yapısında yalnızca karbon (C) u içerir. Fakat uzaydaki dizilişleri ve bağların sağlamlığı farklı olan maddelerdir.
O2 gazı ve O3 (Ozon) gazı birbirlerinin allotropudur. Allotrop için bilinmesi gereken en önemli özellik ise;
Allotrop maddeler bir başka madde ile reaksiyona girdiklerinde aynı cins ürünler oluşur.
2Ca + O2 ® 2CaO
3Ca + 2/3 O3 ® 2CaO gibi.

Modern Teorisi
Elektron dalga özelliği göstermektedir.
Atomdaki elektronun aynı anda yeri ve hızı bilinemez.
Elektronların bulunma ihtimalinin fazla olduğu küre katmanları vardır ve bu katmanlara orbital denir.
ELEKTRONLARIN DİZİLİŞİ
Pauli Prensibi
Elektronlar yörüngelere yerleştirilirken ;
2n2 formülüne uyarlar.
(n : yörünge sayısı, 1,2,3 ………. gibi tamsayılar)
Son yörüngede maksimum 8 elektron bulunur.
Buna göre, her yörüngedeki elektron sayısı :
1. yörünge : 2.12 = 2 elektron
2. yörünge : 2.22 = 8 elektron
3. yörünge : 2.32 = 18 elektron
4. yörünge : 2.42 = 32 elektron alır.

Elektronik konfigürasyon
Bir atomun elektronlarının hangi yörüngede olduğu ve orbitallerinin cinsinin belirtildiği yazma düzenine Elektronik konfigürasyon denir.
n : Baş kuant sayısı olup 1, 2, 3, … gibi tam sayılardır. Elektronun hangi yörüngede olduğunu belirtir.
l : Yan kuant sayısı olup, orbital adı olarak bilinir, s, p, d, f gibi harflerle anılır.
Elektronlar önce düşük potansiyel enerjili orbitallere yerleşirler. Dört değişik enerji düzeyi vardır.
s : Enerji seviyesi en düşük orbitaldir. 2 elektron alabilir.
p : s orbitalinden sonra elektronlar p orbitallerine yerleşir. px , py , pz olmak üzere 3 tanedir. p orbitalleri toplam 6 elektron alabilir.
d : 10 elektron alır ve toplam 5 tanedir. p orbitallerinden sonra elektronlar d orbitallerine yerleşirler.
f : f orbitalleri toplam 14 elektron alır ve 7 tanedir. Enerji düzeyi en yüksek olan orbitaldır.
Yörünge Sayısı (n)
Yörüngedeki orbital sayısı(n2)
Yörüngedeki elektron sayısı (2n2)
1……….
1 (1 tane s)
2
2. ………
4 (1 tane s, 3 tane p)
8
3. ………
9 (1 tane s, 3 tane p, 5 tane d)
18
4. ………
16 (1 tane s,3 tane p, 5 tane d,
7 tane f)
32

Bir atomun elektronları yörüngelere yerleştirilirken okların sırası takip edilir. Bunlar bu sıra ile yazılırsa aşağıdaki gibi olur.
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6

Peryot : Dizilişi yapılan elementin en son yazılan s orbitalinin başındaki sayıya periyot denir.
Grup : Son yörünge orbitalleri s ve p ile bitiyorsa A grubu, d ve f ile bitiyorsa B grubu elementidir.
A grupları son yörüngelerindeki s ve p orbitallerindeki elektronların toplamıyla bulunur.
X: 1s2 2s2 2p6 3s2 3p6 dizilişine göre atom 3. periyot, 8A grubundandır.

PERİYODİK TABLO
Elementlerin atom numaralarına göre belirli bir kurala uyarak sıralanması ile periyodik cetvel oluşur.
Periyodik cetvelde yatay sıralara periyot, düşey sıralara grup denir. Periyodik cetvelde 7 tane periyot, 8 tane A grubu, 8 tane B grubu vardır. 8B grubu 3 tanedir. Her periyot kendine ait olan s orbitali ile başlar p orbitali ile biter. Diger bir ifade ile 1A grubu ile başlayıp 8A grubu ile sona erer.

A grubu elementleri s ve p blokunda,
B grubu elementleri d ve f blokunda bulunurlar.
B grubu elementlerine geçiş elementleri denir. Bunların tamamı metaldir.
Periyodik cetvelde A grubu elementlerinin özel isimleri vardır.

Periyodik cetvelde aynı grupta bulunan elementlerin değerlik elektron sayıları aynı olduğundan benzer kimyasal özellik gösterirler.
METAL-AMETAL ve SOYGAZ’IN ÖZELLİKLERİ
Metal
Ametal
Soygaz
Grup numarası 1A,2A, 3A, ve B gruplarında bulunan elementler metaldir.
Kendilerini soygaza benzetmek için son yörüngelerindeki elektoronları vererek
(+)değerlik alırlar.
1A(+1), 2A (+2)
Kesinlikle (-) değer almazlar.
Kendi aralarında bileşik oluşturmazlar.Ametallerle bileşik oluştururlar.
İndirgen özellik gösterirler.
Tel ve Levha haline gelebilirler.
Elektirik akımını iletirler.
Tabiatta genellikle katı halde bulunurlar .
Grup numarası 5A ,6A,7A, olanlar ametaldir.
Soygaza benzeme yani son yörüngelerindeki elektronları 8’e tamamlamak için elektron alarak(-) değerlik alılar.
5A(-3),6A,(-2)7A(-1)…
Fakat(+) değerlik alabilirler.
Kendi aralarında ve me-tallerle bileşik oluşturur-lar.
Yükseltgen özellik göste-rirler.
Tel ve levha haline gel-mezler.
Elektirik akımını iletmez-ler.
Tabiatta genelde gaz ve çift atomlu moleküller halinde bulunurlar. (F2,N2,02…)
Grup Numarası 8A olanlar soygazdır.
Kararlıdırlar,elektron alış-verişi yapmazlar.
Bileşik yapmazlar
Orbitalleri doludur.
Tabiatta tek atomlu gaz halinde bulunur-lar.
• BİLEŞİK OLUŞUMU
a. Metal + Ametal
b. Ametal + Ametal
Metaller son yörüngelerindeki elektronları vererek (+) değerlik alırlar.
Ametaller ise son yörüngedeki elektronları 8’e tamamlamak için elektron alarak (-) değerlikli olurlar.
Bileşik formülünü bulabilmek için öncelikle bileşiği oluşturacak elementlerin değerlikleri tespit edilir. Bu değerlikler en küçük katsayılar şeklinde çaprazlanır.
En genel ifadesi ile X+m ile Y-n iyonu XnYm
bileşiğini oluşturur.
Bileşiği oluşturan atomların her ikisi de ametal olduğunda farklı bileşik formülleri oluşabilir.

ATOM ve İYON ÇAPI (HACMİ)
Peryot numarası (yörünge sayısı) arttıkça atom hacmi büyür.
Grup numarası arttıkça atom hacmi küçülür. Çünkü yörünge sayısı aynı kalmakta fakat çekirdek yükü ve çekirdeğin elektronları çekme gücü artmaktadır.
Bir atom ya da iyon elektron aldıkça çapı büyür, elektron verdikçe çapı küçülür.
Örneğin; X atomunun hacmi X-n iyonunun hacminden küçük, X+n iyonunun hacminden büyüktür.

Örnek – 1
6C, 14Si, 3Li
atomlarının çaplarını karşılaştırınız?

Çözüm

Peryot numarası büyük olanın çapı en büyük olduğundan Si çapı en büyüktür.
6C, ile 3Li aynı peryotta olduğundan, grup numarası (proton sayısı) arttığı için
çekirdek çekimi büyük olanın çapı küçük olacağından 3Li çapı 6C nun çapından büyüktür. Sonuç olarak çaplar arasında Si > Li > C ilişkisi vardır.

İYONLAŞMA ENERJİSİ
Gaz halindeki bir atomdan bir elektron koparmak için verilmesi gereken enerjiye iyonlaşma enerjisi (1. iyonlaşma enerjisi) denir.
2’inci elektronu koparmak için verilen enerjiye 2. iyonlaşma enerjisi denir.
3’üncü elektronu koparmak için verilen enerjiye 3. iyonlaşma enerjisi denir.
Herhangi bir atom için daima 1.i.E <>
Periyot numarası arttıkça iyonlaşma enerjisi azalır.
Gruplarda iyonlaşma enerjisi sıralaması,
1A < 3A < 2A < 4A < 6A < 5A < 7A < 8A
şeklindedir.
Örnek – 2
Bir X atomu için;
X(g) ® X+2(g) + 2e–
X+1(g) ® X+2(g) + e–
X+1(g) ® X+3(g) + 2e–
DH = 340 k.kal.
DH = 215 k.kal.
DH = 625 k.kal.
Verildiğine göre X atomunun 1. iyonlaşma enerjisi, 2. iyonlaşma enerjisi ve
3. iyonlaşma enerjisi değerleri kaçtır?

Çözüm
1. denklem: 2 elektronu uzaklaştırmak için verilen enerjidir. Yani 1. ve 2. iyonlaşma enerjileri toplamıdır. 2 elektronu koparmak için toplam 340 k.kal enerji harcanmıştır.
215 kkal. 2’inci elektronu uzaklaştırmak için verilen enerji olduğuna göre 2. iyonlaşma enerjisi 215 k.kal’dir. O zaman 340 – 215 = 125 k.kal 1. iyonlaşma enerjisidir. 625 k.kal. X atomunun 1 elektronu uzaklaşmış durumundan 2e– daha uzaklaştırmak için gereken enerjidir. (Yani: 2. ve 3. iyonlaşma enerjileri toplamıdır.)
2. İ.E = 215 k.kal olduğuna göre;
3. iyonlaşma enerjisi = 625 – 215 = 410 k.kal dir.

ELEKTRON İLGİSİ
Gaz halindeki nötr bir atomun elektron yakalamasıyla açığa çıkan enerjidir. Açıga çıkan enerji ne kadar büyük ise elektron ilgisi o kadar fazladır.
X(g) + e– ® X–(g) + Enerji
Periyodik cetvelde 7A grubu elementlerinin elektron ilgisi en büyüktür.
Metallerin ve soygazların elektron ilgileri yok kabul edilir.
KİMYASAL BAĞLAR
Bileşiğin en küçük parçası olan ve en az iki atomun birleşmesinden meydana gelen kararlı yapı moleküldür. Moleküldeki atomları bir arada tutan kuvvet ise kimyasal bağlardır.

Kimyasal bağlar ikiye ayrılır.
1. İyonik bağ
2. Kovalent bağ

İYONİK BAĞ
Metallerle ametaller arasında meydana gelen bağlardır. Metaller elektron vererek (+) yüklü iyon, ametaller elektron alarak (-) yüklü iyon oluştururlar. Bu zıt yüklü iki iyonun birbirlerini coulomb çekim kuvveti ile çekmesinden iyonik bag oluşur.
Örnek olarak NaCI bileşiğinde Na atomunun iyonlaşma enerjisi küçük olduğundan 1 tane değerlik elektronunu vererek (+1) yüklü iyon, klor ise Na atomunun verdiği elektronu alarak (-1) yüklü iyon oluşturur. Bu iki iyonun birbirini coulomb çekim kuvveti ile çekmesi sonucu NaCI bileşiği oluşur ve meydana gelen bağ iyonik bağdır.
iyonik bağ oluşurken metal ve ametal ne kadar aktifse bağ o kadar sağlam olur.
Örnek – 3
13Al ve 16S atomları arasında oluşan bileşiğin 1 molekülü için:
I. Al atomları toplam 6 elektron verir.
II. S atomları toplam 3 elektron verir.
III. Al2S3 iyonik bileşiği oluşur.
hangileri doğru olur?
A) Yalnız I
B) Yalnız III
C) I ve III

D) II ve III
E) I, II ve III

Çözüm
Al ve S atomlarının elektronlarının dizilişi
Al : 1s2 2s2 2p6 3s2 3p1
S : 1s2 2s2 2p6 3s2 3p4
şeklindedir. Al atomunun son yörüngesinde 3 elektron, S atomunun son yörüngesinde 6 elektron vardır. Al metal, S ametaldir.
Al ve S atomu arasında oluşan bileşik (Al+3 ve S-2 iyonlarının yükleri çaprazlanırsa) Al2S3 olarak bulunur. Oluşan bileşik iyonik bileşiktir.
Al2S3 bileşiğinde 2 tane Al atomu vardır. 1 tane Al atomu 3 elektron verdiğinden 2 tane Al atomu 6 elektron verir. 3 tane S atomu 6 elektron alır.
Buna göre I ve III dogru, II yanlıştır. Cevap C’ dir.

KOVALENT BAĞ
Ametallerin (C, N, P, S, O, H, F, CI, Br, I) kendi aralarında elektron ortaklığı ile oluşturdukları bağdır.
Örnek olarak hidrojen molekülü arasındaki bağı incelersek;
Hidrojenin atom numarası 1 olduğundan, 1 tane elektronu vardır. Bu elektron 1s orbitalinde bulunmaktadır. ıki hidrojen atomundaki birer elektronun etkileşmesinden H2 molekülü oluşur, aradaki bağ kovalent bağdır. Hidrojen molekülü H••H veya H–H şeklinde gösterilir.
Aynı cins ametal atomları arasında oluşan kovalent bağ apolar, farklı cins ametal atomları arasında oluşan kovalent bağ polardır. H2 molekülündeki H – H bağı apolar, HCl molekülündeki H – Cl bağı polardır.

Devamını Oku